Proceedings of the

Haskell Workshop

June 25, 1995
La Jolla, California

A workshop sponsored by ACM and IFIP.

Yale University Research Report
YALEU/DCS/RR-1075

Proceedings of the

Raskell Workshop

June 25, 1995
La Jolla, California

Paul Hudak, Chair
Yale University

A workshop sponsored by ACM and IFIP.

Yale University Research Report
YALEU/DCS/RR-1075

Foreword

This collection of papers was prepared for presentation at the ACM/IFIP-sponsored
Haskell Workshop held on June 25, 1995, in La Jolla, California, as part of the larger
PLDI/PEPM/FPCA conference extravaganza. The Call for Contributions for the work-
shop read:

The functional language Haskell is approaching its 5th birthday. There are
now several robust and popular implementations of Haskell, and it has been
used in a variety of applications, big and small, academic and industrial. This
informal workshop is aimed at discussing the future of Haskell: what have
we learned, what should be different, and what is the process for change?
The forum will consist of invited talks, presentations of submitted papers,
specific proposals for change, and open discussions on the most interesting
topics. (Although the workshop will not address implementation techniques
per se, implementation issues will be considered when sufficiently influenced
by language design.)

Submitted papers were informally reviewed by a collection of anonymous referees,
with those in this proceedings chosen for presentation based on quality and relevance
to the workshop theme. Despite the review process, all papers should be considered as
preliminary descriptions of work in progress, and all copyrights remain exclusively with
the authors.

I'wish to thank the anonymous referees for their helpful and timely reviews, David Wall
and Dennis Volpano for their help with local arrangements, John Williams and Barbara
Ryder for their general support, and my assistant Linda Joyce for her help in assembling
the proceedings.

Paul Hudak
Chair, Haskell Workshop
June 1995

Haskell Workshop

9:00-9:10 Weicome
9:10-10:50 Session 1: Concurrency

Four Concurrency Primitives for Haskell
Enno Scholz (Freie Universitat)

Concurrent Haskell: preliminary version
Simon Peyton Jones and Sigbjorn Finne (University of Glasgow)

Semantics of pH: A parallel dialect of Haskell
Shail Aditya (MIT), Arvind (MIT), Lennart Augustsson (Chalmers),
Jan-Willem Maessen (MIT), Rishiyur S. Nikhil (DEC, CRL)
11:15-12:30 Session 2: Haskell 1.3
Monadic I/O in Haskell 1.3
Andrew D. Gordon (University of Cambridge) and
Kevin Hammond (University of Glasgow)

Designing the Standard Haskell Libraries (Position Paper)
Alastair Reid and John Peterson (Yale Univesity)

2:00-3:40 Session 3: Type Classes, Modules, and Records

Adding Records to Haskell
John Peterson and Alastair Reid (Yale University)

Haskell++: An Object-Oriented Extension of Haskell
John Hughes and Jan Sparud (Chalmers)

From Hindley-Milner Types to First-Class Structures
Mark P. Jones (University of Nottingham)

4:00-5:15 Session 4: State

Data Compression in Haskell with Imperative Extensions, A Case Study

Peter Thiemann (Universitat Tubingen)

Writing Portable Monads for Manipulating State
Jan-Willem Maessen (MIT)

13

35

50

69

82

99

115

137

151

Four Concurrency Primitives for Haskell

Enno Scholz”
Freie Universitit Berlin
Institut fiir Informatik
Takustr. 9, 14195 Berlin

Email: scholz@inf.fu-berlin.de
Fax: +49-30-83875109

Abstract. A monad for concurrent programming that is suitable for being built into Haskell is
presented. The monad consists of only four primitives with a very simple semantics. A number of
examples demonstrate that monads encapsulating other, more sophisticated communication
paradigms known from concurrent functional languages such as Concurrent ML, Facile, and
Erlang can be naturally and systematically constructed from the built-in monad in a purely
functional way.

The paper argues that minimizing the number and complexity of the concurrency primitives and
maximizing the use of purely functional abstractions in the design of concurrent languages helps to
remedy a recurrent dilemma, namely, how to keep the language small and rigorously defined, yet
to provide the programmer with all the communication constructs required.

An interleaving implementation of the monad has been built by extending Mark Jones's Gofer
environment to handle the concurrency primitives. All programs presented in the course of the

paper have been executed using this implementation.

1. Introduction

The topic of concurrency has recently received much
attention in programming language research, in general, and
in functional programming research, in particular. There
seems to be a fundamental conflict between the inherent
nondeterminism of concurrent computations and the
referential transparency that is considered to be the main
virme of functional languages. Thus, languages like
Concurrent ML [Perry 93], Facile [Thomsen et al. 93] and
Erlang [Armstrong et al. 93] emerged; these sacrifice
referential transparency by allowing purely functional
computations and computations with side effects to be
arbitrarily interspersed.

A technique for reconciling referential transparency and side
effects does exist, however: monads. In Haskell, all 1/O
operations are encapsulated in a special monad. Since it is
well-known that communicating processes are a
generalization of programs performing I/O, in principle, there
is no hindrance to-use the same technique to enhance Haskell
with primitives related to concurrency.

However, a look into the world of concurrent languages
reveals a bewildering multitude of communication paradigms

and primitives, and even with respect to functional
concurrent languages, the situation is not much clearer. At
first glance it seems that concurrency is still very much a
moving target, unsuitable to be introduced to Haskell, which
is intended to reflect the consensus of the lazy functional
programming community. How could a consensus ever be
reached regarding the concurrency primitives to be provided?

This paper makes the point that a set of concurrency
primitives might be agreed upon if their number and
complexity is designed to be minimal. Striving for a minimal
concurrent extension of Haskell, we present a calculus of only
four concurrency primitives that is sufficient to serve as a base
for implementing other, arbitrarily more sophisticated,
communication paradigms within Haskell, i.e., in a purely
equational way. The main part of the paper is devoted to
supporting the claim that, using monads, this can be done
naturally and systematically. Complete definitions of an
Erlang-style actor paradigm and a paradigm in the style of
Concurrent ML are given; moreover, an implementation of an
Ada-style paradigm is sketched.

We believe that minimizing the number and complexity of the
concurrency primitives while maximizing the part of the

*The author's research is supported by a PhD scholarship from the German Research Council (DFG) under grant Ho 1257/1-2.

concurrent program that is defined purely equationally has
beneficial effects in the following areas:

Verification: The fewer and the simpler the primitives, the
more of a concurrent program's code is written within the
functional language. This means that a maximum of the
formal reasoning about its properties can be conducted within
the well-understood theory of functional programming, i.e.,
purely equationally. Only a minimum of the formal reasoning
must be conducted within the inherently more complex theory
of the underlying concurrency calculus.

Semantics: The minimalist approach presented may help to
remedy a recurrent problem in the design of concurrent
languages, namely, how to keep the language small, coherent,
and well-defined, yet to provide the programmer with all the
communication constructs required. In reality, concurrent
languages seem to fall into two categories: either they rest on
secure theoretical foundations but have limited applicability in
practice, or they provide all the mechanisms found to be
useful in concurrent programming but are so complex as to be
difficult to treat formally. An example of the former case is
Occam [Inmos Ltd. 84], which is based on the process
calculus CSP [Hoare 851, from which it inherits a large body
of theoretical properties. Examples of the latter case are the
languages SR [Andrews et al. 88] and Ada [Ichbiah 83].
Obviously, the more useful constructs a language contains, the
harder it becomes to give a formal semantics to it. Our
approach might be a useful compromise. Although giving a
formal semantics to the four primitives presented here is
beyond the scope of this paper, it should not be impossible.
That done, any other programming paradigm defined
equationally on top of these primitives would have a well-
founded semantics.

Programming style: Using monads to structure sequential
functional programs amounts to splitting the programming
process in two phases that can be characterized as follows:
first a customized, application-specific programming
language (the monad) is built which takes care of the
bookkeeping; then, the interesting part of the program is
written in the clearest possible way. We believe that this
approach is very promising in concurrent programming, too.
In many concurrent programs, a substantial part of the
application's code is used for mapping the application’s
communication structure to the language's primitives.! This
code can be wrapped up by first programming a monad
encapsulating a communication paradigm adequate for the
application, then solving the problem.

Prototyping: Experiments indicate that functional languages
have several advantages over imperative languages for the
purpose of prototyping sequential programs [Carison et al.
93]; it is not clear, though, whether these advantages carry

1 1n concurrent programming, a saying - originally coined to promote
monads in another context - seems to fit, namely, that "programmers
often find themselves peering through the underbrush at the
interesting code somewhere within.” [Hall et al. 92].

over to the prototyping of concurrent programs. Prototyping of
concurrent programs seems to require that the communication
paradigm used by the prototype and that provided by the
implementation language are similar; it makes little sense, for
instance, 1o prototype an Ada application in a language based
on message passing. The two-phase technique mentioned
above may be particularily useful in prototyping: First the
concurrency paradigm of the implementation language is
modelled in the functional language, then a prototype is built
using this paradigm.

The paper is organized as follows: The next section addresses
some related work. Section 3 explains the notation used. In
Section 4, the four primitives are presented. Building them
into Haskell in the style of the /O monad enables concurrent
computations to be expressed in a referentially transparent
way. An operational semantics of the primitives is given and
illustrated by a sample application. Section 5 shows how
operations may be added to an existing communication
paradigm: The built-in paradigm is enhanced with additional
operations for remote function call. Section 6 through 8
demonstrate how one communication paradigm may be built
on top of another; monads encapsulating communication
paradigms resembling those paradigms which form the basis
of the concurrent languages Erlang, Concurrent ML, and Ada
are presented. Section 9 discusses the lessons learned.

We have built an interleaving implementation of the
concurrency monad presented here by extending Mark Jones's
Gofer environment [Jones 94] to handle the concurrency
primitives. All programs presented in the course of this paper
have been executed using this implementation.

2. Related Work

In [Jones, Hudak 93], the potential of using monads to express
concurrent computations is explored. To this end, three
operations corresponding to our newChan, send and receive
primitives are added to the IO monad. The main difference 0
our work seems to be that Jones and Hudak aim at avoiding
nondeterministic semantics. Therefore, they do not make fork
a primitive which introduces nondeterminism into the
language, but rather define it as an ordinary function within
the language which serves as an annotation telling the
compiler to try to execute two expressions in parallel. While
Hudak and Jones highlight the advantages of their approach
by comparing them to lazy stream-processing, our work is
more in the tradition of [Karlsson 81] and [Perry 90}, who use
continuations for introducing nondeterminism and
concurrency into pure functional languages without
sacrificing concurrency. Here, the main objective is not to
speed up functional computations by paraliel execution in a
context where nondeterminism is considered a necessary evil,
but rather to enable concurrent applications which are
inherently nondeterministic, for instance operating systems
and graphical user interfaces, to be expressed in a functional
language. We focus on a question, though, that as yet seems to
have received little attention in the literature, namely, how the

choice of the concurrency primitives influences the software
engineering of concurrent programs in functional languages.

3. Notation

The notation used in this paper is essentially the functional
programming language HASKELL [Hudak et al. 92], however,
with the following extensions:

We assume a type system with constructor classes and special
syntax for monads as documented and implemented in the
functional programming system GOFER, version 2.30 [Jones
94]. The syntax for monads is defined as follows: an
expression of type m a, where m is a monad type constructor,
is started by keyword do followed by a nonempty list of
entries, of which the last must be of type m a and is called zail
expression. The others are called qualifiers. The rules for
transforming a do expression into one using ‘bind" are given
in Fig. 1. In case more than one rule matches, the first one
applies.

do { Pat < Exp; Rest]= Exp “bind* \Pat — do { Rest }
do { Exp; Rest } = Exp ‘bind"_ — do { Rest]
do{let{..];Rest}] =let{. }in do { Rest }
do { [Exp] } = result Exp

do {Exp) = Exp

Fig 1: Special syntax for monads

Note that, in contrast to a qualifier, a tail expression is not
changed by the transformation. Furthermore, the equivalence
of [x] and result x in the list monad is adopted to hoid for
arbitrary monads in this syntax.

In this syntax, the following expression using primitives from
the Haskell 1.3 proposal for monadic I/O

getChar bind*\c -
(case ¢ of 'y"— putChar'Y’
‘n’ — putChar ‘N') ‘bind*_—
result True
becomes

do ¢ « getChar
case c of 'y’ — putChar 'Y’
‘n" — putChar ‘N’
[True]

Moreover, we take the licence to declare type synonyms as
instances of constructor classes. In Gofer, this is only possible
for type constructors of algebraic data types, which means that
every type synonym that is to be used as a monad must be
enclosed in an algebraic data type of its own, which leads to a
slight cluttering of the code.

To make the paper seif-contained, an informal description of
functions from the Haskell standard prelude is given where
they appear in the example programs. For their definitions,
refer to [Hudak et al. 92].

4. The Concurrency Primitives
4.1. Interface

The concurrency primitives that are added to Haskell are
represented by functions on a monad Process. Their
signatures are given in Fig. 2.

send :: Chana — a - Process ()
receive :: Chana — Processa
fork :: Process ()= Process ()
newChan :: Process(Chana)

Fig. 2: The concurrency primitives

A term of type Process a is called a process term. It
encapsulates a concurrent computation yielding a value of
type a. In analogy to the /O monad, we assume that the
compiler will know that process terms must be evaluated
according to the operational semantics given in Section 3.3.
At any time, an arbitrary number of process terms will be
evaluated concurrently. Each of these terms is called a
process.

In general, monads representing a given communication
paradigm are abstract data types with a given set of interface
functions (besides bind and result). In the sequel, we will call
these interface functions the paradigm's instructions. Other
functions on the monad which are defined in terms of the
instructions are called operations.

Processes communicate by point-to-point,
message-passing on typed, first-class channels.

synchronous

The operations a process can perform are: send a message on
a given channel (send) of matching type, receive a message on
a channel (receive), start another process (fork), or create a
new channel (newChan). A process wanting to send a
message on a given channel is halted until a process wanting
to receive a message on the same channel is found, and vice
versa, such that the sender and the receiver of a message are
forced to synchronize.

In case that at one time there are many processes wanting to
execute a send or a receive operation on the same channel,
they are paired in a nondeterministic manner that is at the
implementation's discretion. It is guaranteed, however, that
every message sent is received exactly once by one process.
Note that the data type Chan a is an abstract data type which
has a representation that depends on the language
implementation. Besides equality, there is only one other
function named tofnt defined on objects of Chan a. toint
returns different integer values for different channels.

4.2. Implementation

Since the outcome of a concurrent computation is
nondeterministic, the monad Process cannot be implemented
within Haskell. We describe the operational semantics of the

primitives by a transition relation on sets of process terms.

In Fig. 3 where the primitives' operational semantics is
defined, exp [v := exp’] denotes the expression obtained by
substituting every free occurrence of variable v in expression
exp by exp’. The operator ® denotes the union of two sets with
empty intersection.

Initialization:
dop ={dop}

where p :: Process a, a #()
Transition:

ps ® {do send m ch; p}

® {do m’ « receive ch; p} = ps{p,p'[m :=m]}
ps @ {do [0]} = ps
ps ® {do fork p’; p} = psu{p.p}
ps ® {do ch «— newChan; p} => psyu {p[ch:=ch’]}

where ch’ fresh

Successful termination:
ps® {do[x]} =x

wherex ::a,a#()

Fig. 3: The concurrency primitives' operational semantics

To start the evaluation of a process term p, an initial set
having p as its only element is created. Repeatedly, from the
transition rules given in Fig. 3, one that matches the current
set is selected nondeterministically and applied to the current
set, yielding a new set. This procedure is repeated until until
either the initial process has been reduced to normal form [x]
(which stands for result x in our syntax!), or there is no
matching rule. In the former case, the computation's result is
x, in the latter case, the computation is deadlocked. Note that
the initial process has type Process a where a # () while other
processes created in the course of the computation have type
Process (). Moreover, note that there is no explicit
termination command: processes terminate implicitly when
they return a value.

We have now completed the definition of the concurrency
primitives' syntax and operational semantics. Obviously, the
underlying communication paradigm is of utmost simplicity.

In the sequel, we show that that the primitives provided are
not merely suitable for the construction of serious programs,
but can indeed serve as a building-blocks for customized
communication mechanisms which are considerably more
powerful. Two techmiques for constructing new
communication mechanisms are studied in this paper: on the
one hand, an existing communication paradigm can be
extended with additional operations; on the other hand, a
completely new communication paradigm may be constructed
on top of an existing one. In the remainder of this section and
in the next one, additional operations on the Process
paradigm will be developed; the remaining sections are
devoted to the implementation of new paradigms.

4.3. Application

To illustrate the use of the concurrency primitives, we develop
a generic concurrent divide-and-conquer operation
divAndConq. At the core of every divide-and-conquer
algorithm there are four domain-specific functions which
govern the algorithm’'s behaviour: isTrivial is used to
determine whether a problem is trivial, in that case it can be
solved by solve; otherwise it must be divided into two simpler
subproblems (using divide), whose solutions are combined
using compose. These functions may conveniently be

abstracted from using type classes.
class Problemp where isTrivial ::p — Bool
divide :p-(p,p)
class Solution s where compose ::5—>s—>s
class Solvable p s where solve ip-s

The operation divAndConq takes a problem as its parameter,
creates a subprocess to calculate the solution, and immediately
returns a newly-created channel sChan, on which the
subprocess will eventually make the solution available. In case
the problem is trivial, the subprocess sends the solution on
sChan and terminates. Otherwise, it divides the problem into
two subproblems pl and p2, solves them using divAndCong,
receives the subsolutions on channels sChanl and sChan2,
composes them, and terminates after sending the final
solution on sChan.

divAndCongq :: (Problem p, Solution s, Solvable p s) =
p - Process (Chan s)
divAndConq p =
do sChan « newChan
Jork (
do if isTrivial p then
do send sChan (solve p)
else
do let (pl p2) = divide p
sChanl « divAndCongq pl
sChan2 « divAndConq p2
sl « receive sChanl
52 < receive sChan2
send sChan (compose sl 52))
[sChan]

Taking lists of integers to be the problem and solution
domain, the following instantiation of the classes Problem,
Solution and Solvable turns divAndConq into the concurrent
version of a popular sorting algorithm.

instance Problem [Int] where
isTrivial (<=1).length
divide (x:xs) if null as then ([x], bs)
else (as, x:bs)

where
as=[x[xex5,x<=x]
bs=[x]|xe—x5,x>x]

instance Solution [Int] where compose = (++)
instance Solvable [Int] [Int] where solve = id

quickSort :: [Int] — Process [Int]
quickSort p =
do sChan « divAndConq p
receive sChan

Note that length, nuil, id, and (++) are defined in the
standard prelude. length returns the length of a list, null tests
whether a list is empty, id is the identity function, and (++)
concatenates two lists.

5. Adding Remote Function Call

Given the purely functional definition of an abstract data type
(abbrev. ADT), we extend the Process monad with operations
for defining multiple server processes, each with a unique
identity, offering the ADT's operations as remote functions to
arbitrary client processes.

5.1. Interface

The interface of the remote function call mechanism consists
of two operations newServer and (?).

newServer :: a — Process (Serverid a)
(?) :: Serverld a — (a — (b,a}) — Process b

The function newServer takes an object, creates a server for it,
and returns a reference to the server. The function (?) takes as
its parameters a reference ref to a server for an object of type a
and a state transformer f on type a returning an object of type
b. The command ref ? f causes f to be applied to the object
managed by the server process, which updates its state
accordingly, and sends an object of type b back to the client.

5.2. Application

Consider the ADT Dictionary which offers dictionary
services.

createDictionary :: [(Stringint)] — Dictionary

add ::String —» Int - Dictionary — ((), Dictionary)
delete :: String — Dictionary — ((), Dictionary)
lookUp :: String — Dictionary — (Int, Dictionary)

Its interface consists of one generator function
createDictionary and three operations add, delete, and
lookUp. (Their definitions are omitted here.) The following
process rfcClient illustrates the creation and use of a remote
function call server for objects of type Dictionary.

rfcClient :: Process ()
rfcClient =
do let dictl = createDictionary [("Peter”, 10000)]
dict2 = createDictionary [("Paul”, 300),
("Mary"”, 850)]

richPeople < newServer dictl
poorPeople « newServer dict2
balance « poorPeople?lookUp "Mary”

poorPeople?delete "Mary”
richPeople?add "Mary" (balance + 2000)

Note that the derived process functions coexist with the
interface functions of Process, i.e., one process may use both,
for instance, (?) and send.

5.3. Implementation

Conceptually, a server for an object of a given type a is a
process having the object as its state. It receives functions of
type a — (b, a), applies the function to its state, returns the
first element of the resulting pair to the caller and update its
state with the second element. The problem is how to
represent a reference to the server. A general technique is to
identify a process by the channel it listens to. Thus, the
straightforward solution is to implement Serverld a as
follows:

type Serverld a = Chan (a —> (b, a), Chan b) - wrong

This would mean that a server understands messages
consisting of a state transformer function to be executed and a
channel on which to return the result. However, this does not
work without existential types, because, for different requests,
type b is expected to vary. How can type b be removed from
the definition of type Serverld a? The solution is to have the
requester transmit a message which combines the application
of the state transformer and the command sending back the
result into one piece of code:

--0k

To issue a request using (?), a process sends such a piece of
code to the server which takes the server's state a as an
argument, applies the state transformer to it, yielding an
object (b, a’), makes b available on a channel that the
requester listens to, and returns a’.

type Serverid a = Chan (a — Process a)

(?) :: Serverld a — (a - (b,a)) — Process b
requestChan ? f =
do replyChan « newChan
send requestChan (\a — dolet (b,a’}=fa
send replyChan b
[a])

receive replyChan

The server repeatedly receives such a piece of code, provides
it with its state and gets back its new state when executing it.

server :: Serverld a — a — Process ()
server requestChan a =
do request « receive requestChan
a’ «request a
server requestChan a’

newServer a is implemented by forking a server process for a,
supplying it with a new channel on which to listen, and
returning the appropriately typed channel.

newServer :: a — Process (Serverld a)
newServer a =
do requestChan < newChan

Jork (server requesiChan a)
[requestChan]

5.4. Remarks

Note that the primitives newVar, readVar, and writeVar used
by Launchbury and Peyton Jones to incorporate mutabie state
variables into Haskell {Launchbury, Peyton Jones 94] can be
implemented trivially in terms of newServer and (?).

6. Actors

In the previous section, one communication paradigm was
enhanced with additional operations. This section illustrates
how a completely new communication paradigm, an actor
paradigm resembling the one on found in Erlang [Armstrong
et al. 93], may be built on top of an existing one, namely, the
built-in calculus.

6.1. Interface

The actor monad ACT implements the paradigm of point-to-
point, unidirectional, asynchronous, buffered message passing
with explicit, guarded message receipt using an asymmetric
naming scheme. That is, sending a message is non-blocking
and requires the sender to know the name of the receiver. An
actor wishing to receive a message explicitly issues an
instruction which causes its execution to halt until a message
from an unspecified sender (whose identity is possibly
unknown to the receiver) has arrived. Messages sent to an
actor are buffered in an unbounded message queue. The order
in which two messages were sent is not necessarily that in
which they arrive. Each actor in the system is uniquely
identified by a process identifier (abbrev, PID).

An expression of type ACT m a is called an actor term and
represents a computation which understands messages of type
m and returns a result of type a. (The distinction between
actors and actor terms is the same as the distinction between
processes and process terms.) These are the operations an
actor can perform:

receiveACT :: (m—>Bool) >ACTmm
sendACT 2 Pidm'->m = ACTm ()
selfACT > ACT m(Pid m)

JorkACT 2 ACTm' () > ACTm(Pidm’)

sendACT takes the receiving actor's PID and the data item to
be transmitted as its parameters. receiveACT takes a predicate
on messages, the guard, as its parameter; it blocks until a
message m arrives for which the guard evaluates to True, then
it returns m. selffACT take no parameters and immediately
returns the current actor’s PID. forkACT takes the actor term
to be evaluated concurrently as its parameter and returns the
child actor's PID. Note that PIDs, like channels, are typed,
such that no actor can receive a message that it does not
understand.

6.2. Application

This example actor returns the value 100. It illustrates how
the use of guards enables an actor to process messages in an
order that is independent of their order of arrival. Moreover, it
illustrates that the operation sendACT is non-blocking.

mainACT :: ACT Int Int
mainACT =
do self « selfACT
child « forkACT (do sendACT self 50
5endACT self 150)

5endACT child "hallo”
a « receiveACT (> 100)
b « receiveACT (< 100)
[a-b]

Note that the implementation of the actor calculus is
completely hidden. In particular, an actor cannot execute
operations defined on Process.

6.3. Implementation

It is well-known that asynchronous communication can be
implemented in terms of synchronous communication by use
of buffers. The idea is to implement an actor by a process with
additional state, namely, a channel on which to listen for
messages, and a message buffer.

In [King, Wadler 92], [Jones, Duponcheel 93}, and [Jones
95], techniques for combining monads are discussed. Using
constructor classes, a monad transformer S can be defined
which combines the state monad introduced by [Wadler 92]

. with an arbitrary other monad m:

type S stma = st —>m/{a, st}

instance Monad m = Monad (S st m) where
resulta =\st — [(a,st)])
bindma f =\st — do (a,st’) < ma st
fasr)
Here, st is the type of the monad's state.

Only three operations on this monad exist. Either its state can
be read using readS, or its state can be set, using writeS, or an
operation of the inner monad may be executed, using innerS.

readS :: Monad (S stm) = S st m st
read$S =\st — [(st, st)]

writeS :: Monadm = st > S stm ()
writeS st’ =_— [((), st')]

innerS :: Monadm=ma —->Sstma
innerSma =\st > doa<—ma

[(a, st)]

Now a monad enhancing the monad Process with the
additional state information described above looks like this:

type ACTm = S(Pidm, [m]) Process

An actor is identified by its PID, which is implemented by the
channel the actor listens to.

Chanm

To receive a message, an actor checks whether its message
buffer contains a message for which the guard evaluates to
true, in which case this message is removed from the buffer
and returned immediately. Otherwise, the actor repeatedly
executes receive and places the arriving messages in the
buffer until a message arrives for which the guard evaluates to
true.

receiveACT :: (m = Bool) > ACTmm
receiveACT guard =
do (chan, xs) <« readS
let (xs’, xs”) = span (not . guard) xs
if null xs” then
do let loop =
do (chan, xs) < readS
x « innerS (receive chan)
if guard x then
do [x]
else
do writeS (chan, xs ++ [x])
loop

type Pidm =

loop
else
do writeS (chan, xs’ ++ tail xs”)
[head xs”]

Note that span is defined in the standard prelude. It takes a
predicate and a list as its parameters and splits the list into a
left and a right part. The left part is the largest initial part of
the list such that the predicate is true for all its elements; the
right part is the rest of the list.

To send a message to another actor, the sender forks a process
that makes the message available on the channel that the
receiver is listening to. This way, the sending actor does not
block until the message has been processed by the receiver.

sendACT :: Pidm' »m’ —> ACTm ()
sendACT other m =
do innerS (fork (send other m))

Using selfACT, an actor gets to know its own PID.
selfACT :: ACT m (Pid m)
selfACT =
do (chan, _) « readS
[chan]

When a new actor is forked, it is supplied with a new channel
to listen to and an empty message buffer.

Its state after termination is discarded.

forkACT :: ACT m’ () > ACT m (Pid m’)
forkACT p =
do chan « innerS newChan
innerS (fork (do p (chan, [])

[(01)
[chan]

This is how the first actor is started:

initActor :: Actor m a — Process a
initActor actor =
do chan « newChan
(a,) « actor (chan, 1),
(a]

7. Concurrent ML

In this section, the communication paradigm used in
Concurrent ML is implemented on top of the built-in
paradigm. Essentially, this means adding an operator for
external choice, as found in, e.g., Occam and Facile.
However, these languages require the guards of the external
choice to be syntactically distinguished from ordinary send or
receive commands. This requirement severely reduces the
modaularity of the resulting programs; this topic is discussed at
length in [Reppy 88]. In Concurrent ML, and in our calculus,
this restriction does not apply.

In the CML paradigm, CML terms and CML processes are
defined analogously to process terms and processes,
respectively.

7.1. Interface

The CML paradigm has four instructions which have the
same semantics as those of the built-in paradigm:

sendCML +:ChanCML a — a - CML ()
receiveCML :: ChanCMLa —> CML a
forkCML :2CML () - CML{()

newChanCML :: CML (ChanCML a)
However, there is one additional instruction:
chooseCML :: [CML a] ->CMLa

While each ordinary process is only ready to execute one
instruction at a time, a CML process having the form
chooseCML [p;,..,.p.] may be ready to execute more than one
instruction at a time, namely, all the first instructions of the
Pi1r..Pa- The choice which one is actually executed is
nondeterministic.

7.2. Application

The string returned by the following CML process mainCML
is either "pli: first p2: first” or "pl: second p2: second”.

mainCML :: CML String
mainCML =
do chanl < newChanCML
chan2 & newChanCML
chan3 <« newChanCML

letpl =
do alt « chooseCML [
do sendCML chanl 1
["pl: first "],
do receiveCML chan2
["pl: second "]
1
sendCML chan3 alt

letp2 =
do alt '« chooseCML [
do chooseCML [
do receiveCML chanl
["p2: first "],
do chooseCML [
do sendCML chan2 2
["p2: second "],
do tid pl
["Can't happen!”]

)

]
sendCML chan3 alt

chooseCML (forkCML pl]
forkCML p2

sl « receiveCML chan3
52 « receiveCML chan3
[s] ++ 52]

The process illustrates two points about the paradigm:

1. The nesting of chooseCML instruction does not matter:
p2 could be rewritten using only one chooseCML
instruction.

2. An element of a chooseCML instruction is not restricted
to an instruction sequence starting with a send or a
receive, but may be an arbitrary functional expression,
like tid p1, or forkCML p2.

The last point is especially important for enabling abstraction
and modularity, which was first recognized by Reppy and
motivated him to devise "first-class synchronous actions”
[Reppy 881 which form the basis of Concurrent ML [Reppy
93]. In Concurrent ML and in the calculus presented here,
One can COmpoSe SeIVer Processes pi,...Px 10 a New server
process writing chooseCML [p;,..,p.], without knowing on
which channels p,,..,p, want to communicate, whether they
want to send or to receive, or knowing anything at all about
their implementation. In fact, the guards of the external

choice operator may be computed dynamically. This an
advantage over languages like Occam or Facile, where the
guards of the external choice operator must be known
statically.

7.3. Implementation

The idea of the implementation is to have a global transaction
manager process which any CML process consults before
executing an instruction. This is done by sending a
transaction request to the transaction manager.

type TAReq = (Tid, Chan (Maybe Tid), TAKind)
data TAKind = Send Chanld (Process ())
| Receive Chanld
| Fork (Chan Tid)
]/ NewChan
type Tid = Int
dataMaybea = Yesa
|/ No

A process issuing a transaction request tags it with its current
transaction identifier (abbrev. TID). The transaction manager
can either commit, or abort, or suspend a transaction request.
For every TID, it will commit at most one transaction request
tagged with this TID and abort all the others. The chooseCML
instruction is implemented by forking one CML process for
each of its element terms. While a process’s current TID is
usually unique, all processes created to evaluate an element
term of a chooseCML instruction have the same current TID.
In order w0 execute their first instruction, they all issue
transaction requests tagged with the same TID. Eventually,
only one of them will be commited, which means it can
proceed; all others will be aborted, which means they
terminate.

The transaction manager issues the TIDs to the processes;
whenever one transaction request is committed, the requesting
process is handed a fresh TID. The transaction manager keeps
track of the set of valid TIDs. For each transaction request
that commits, the TID of the request is removed from the set
of valid TIDs and the fresh TID which was handed to the
requesting process is added to the set. Moreover, the
transaction manager stores all suspended transaction requests,
i.e., Send or Receive requests with no matching request

The transaction manager can be in one of three states: its
initial state, the commit state, or the purge state. In the initial
state, the transaction manager waits for a transaction request.
If the request's TID is not valid at all, i.e., if a transaction
request with this TID has committed already, the transaction
is aborted straightaway and the transaction manager retumns
to its initial state. In case the TID is valid, the transaction
manager must decide whether to commit the transaction or
suspend it. If the request is neither for a Fork nor a NewChan
transaction, it is committed immediately; the transaction
manager goes into state commit. If the request is for a Send or
a Receive transaction, however, it can only commit together
with a matching request. Two transaction match, if one of

them is a Receive transaction, the other is a Send transaction,
they both want to communicate on the same channel, and they
don't belong to the same process.

matches :: TAReq — TAReq — Bool

matches (tid, _, Send ch) (tid’, _, Receive ch’) =
{ch==ch’) && (tid /= tid’)

matches(tid, _, Receive ch) (tid’, _, Send ch’) =
(ch==ch’) && (tid I= tid’)

matches __=
False

This is the transaction manager's code:

taManager :: Chan TAReq — [TAReq]
— [Tid] - Tid — Process ()
taManager inChan suspRegqs validTids nextTid =
do (req @ (tid, replyChan, kind)) « receive inChan
if not (tid “elem’ validTids) then
do abort req
taManager inChan suspRegs validTids nextTid
else
do case kind of
Fork_—
commit [req] suspReqs
NewChan —
commit [req] suspReqs
-
case span (not . matches req) suspReqs of
(1)
taManager inChan (req:suspReqs)
validTids nextTid
(regsl, req’:reqs2) —>
commit (sort [req,req’] (reqsl ++ reqs2)

where
commit [(tid, replyChan, Fork replyChan’}] suspReqs’ =
do send replyChan (Yes nextTid)
send replyChan’ (nextTid + 1)
purge [tid] suspRegs’ 2
commit [(tid, replyChan, NewChan)] suspReqs’ =
do send replyChan (Yes nextTid)
purge [tid] suspReqs’ 1
commit [(tid, replyChan, Receive _),
(tid’, replyChan’, Send _ sendCom)] suspReqs’ =
do send replyChan (Yes nextTid)
send replyChan’ (Yes (nextTid + 1))
purge [tid,tid’] suspReqs’ 2

purge commitlds suspReqs’ idsUsed =
do let stillOk (tid, _,) = not (tid ‘elem” commitds)

Jor (filter (not . stillOk) suspReqs’) abort

taManager inChan
(filter stillOk suspReqs’)
{(validTids \\ commitlds) ++

[nextTid..nextTid+idsUsed-1])

{nextTid + idsUsed)

Note that for is a generic function on monads which is defined
as follows:

for ::fa] > (a@a—>Mb)—>M[b]
for(1f =1]
for(a:as) f =do b « fa; bs « for as f; [b:bs]

If there is already a matching request in the transaction
manager's list of suspended requests then both the incoming
and the matching requests are committed simultaneously.
Otherwise, the incoming request is suspended.

Committing one or two transaction requests in state commit
always involves sending a fresh TID to the requester. In the
case of a Fork request, an additional fresh PID for initializing
the child process must be sent to the requester. After that,
those suspended transaction requests that have the same TID
as the one just committed are aborted and removed from the
store; this is done in state purge.

abort :: TAReq — Process ()
abort (_, replyChan, _) = send replyChan No

A CML process term is implemented by an ordinary process
term with extra state, namely, its current TID and the channel
on which the transaction manager receives requests.
Moreover, it it needs an error exit to allow for the possibility
of its current transaction being aborted.

type CML = S (Tid, Chan TAReq) (M Process)

The extra state is provided by the type constructor § which
was introduced in the previous section. The type constructor
M (cf. [King, Wadler 92)) adds an error exit to an arbitrary
monad m by combining it with the Maybe monad:

type M m a = m (Maybe a)
instance Monad m = Monad (M m) where

resulta = [Yesa]
bindmaf = do maybe « ma
case maybe of
Yesa— fa
No —->No

Only two operations are defined on M: exitM exits from the
current computation; innerM executes an operation of the
inner monad.

exitM :: Monadm=>M m ()
exitM s = [No]

innerM :: Monadm=>ma—->Mma
innerM ma = do a < ma
[Yes a]

Note that CML is a doubly nested monad; thus, instructions of
the innermost monad Process are prefixed with innerSM,
instructions of the monad M Process are prefixed with innerS,
and instructions of the monad § st (M Process) can be
accessed without a prefix.

innerSM :: Monad m=>ma —-Sst(Mm)a
innerSM = innerS . innerM

A process wanting to conduct a transaction of kind kind
executes instruction tryTA kind. A message composed of the
process's current TID, a reply channel, and kind is then sent
to the transaction manager. In case the reply from the
transaction manager is negative, the process fails itself. If the
reply is positive, it contains a the process's new TID which is
to be used for executing the next instruction.

tryTA :: TAKind - CML ()
tryTA kind =
do (tid, tm) < read$S
replyChan « innerSM newChan
innerSM (send tm (tid, replyChan, kind))
reply < innerSM (receive replyChan)
case reply of
Yes tid’ —
do writeS (tid’, tm)
No—
do innerS exitM

The transaction request for sendCML and receiveCML
contain an integer value encoding the channel on which a
value is to be communicated.

sendCML :: ChanCML a — a — CML ()
sendCML chan a =
do tryTA (Send (tolnt chan))
innerSM (send chan a)

receiveCML :: ChanCML a - CML a
receiveCML chan =
do tryTA (Receive (toint chan))
innerSM (receive chan}

To fork a new CML process, it is initialized with a fresh TID
and the channel that the transaction manager is listening to.
The resulting state is discarded.

forkCML :: CML () — CML ()
forkCML code =
do replyChan « innerSM newChan
tryTA (Fork replyChan)
tid « innerSM (receive replyChan)
(_, tm) < readS
innerSM (fork (do Yes ((), _) « code (tid, tm)
01

A CML channel is implemented by an ordinary channel.

type ChanCML = Chan
Channel creation in the CML paradigm is the same as in the
built-in paradigm

newChanCML :: CML (ChanCML a)
newChanCML =
do tryTA NewChan
innerSM newChan

For each of its element terms, chooseCML forks one process,
which executes the element process and sends the result and

10

the current TID at the time of termination termination on a
common channel aChan. Since the first transaction of all but
one process will be aborted, only one value will ever become
available on aChan.

chooseCML :: [CML a] - CML a
chooseCML ps =
do (tid, tm) « readS
aChan « innerSM newChan
Jorps(\p >
do innerSM (fork (
do res « p (tid, tm)
case res of
Yes (a, (tid’, _)) — send aChan (a, tid’)
No = [0D))
(a, tid’} < innerSM (receive aChan)
writeS (tid’, tm)
[a]

This is how the initial CML process is started: First, the
transaction manager is started in a state where / is the only
valid TID and 2 is the next TID to be issued. Then, the initial
CML process is started with an initial TID of 1.

initCML :: CML a — Process a
intCMLp =
do chan « newChan
fork (taManager chan [] [1] 2)
Yes(a,) « p(1.,chan)
la]

8. Ada

The last paradigm presented in this paper is an attempt to
capture some of the essentials of concurrent tasks in Ada.
Tasks communicate by accepting and requesting service
rendezvous from each other on the basis of an asymmetric
naming scheme where the requesting task must specify the
desired server, while a task wanting to accept a service
request cannot decide which task it is ready to serve.

8.1. Interface

These are the operations that a process may perform:

newService :: ADA (Service x y)

selfADA :: ADA Taskld

forkADA :: ADA () > ADA Taskld

requestADA :: Taskld — Servicexy ->x—>ADAy
acceptADA :: [Alt] 5 ADA(()

newService creates a new service reference, i.e., a typed object
which is used to tag and match service offers and service
requests. selfADA and forkADA have functionalities
analogous o selfACT and forkACT. requestADA takes a
server's ID, an operation identifier and the operation's
argument as ist parameters. requestADA blocks until the
chosen server has accepted and executed the operation, then it
returns the operation's result. acceptADA takes a list of

alternatives as its argument. Each alternative associates one
operation identifier with a piece of code handling this
operation. An alternative is constructed using operator (>>).

(>>) :: Servicexy — (x - ADA y) — Alt

8.2. Application

The program mainADA uses a server task calculator whose
exceedingly weird behaviour can only be justified with its
intended use of illustrating the communication paradigm.

mainADA :: ADA Int
mainADA =
do mult «— newService
square « newService

let calculator :: ADA ()
calculator =
do acceptADA [
mult >>\ (m,n) >
do [m* n]
]
acceptADA [
mult >> \pair —
do helper « forkADA calculator
requestADA helper mult pair,
square >>\n —
do acceptADA [
square >>\n"' >
do [n'*n’]
1
[n*n]
]

calculator

server « forkADA calculator

a « requestADA server mult (4,5)
SforkADA (requestADA server square 0)
requestADA server square a

Initially, a calculator task offers only one kind of service to its
surroundings, namely, the operation mult. Having successfully
executed it, it offers the operations mult and square. Should
the surroundings choose the operation mulit to be executed, the
calculator starts another calculator and lets it perform the
actual multiplication. Should a client task choose the square
service, it will be blocked until a second client asks for the
square service, too; then, both clients will be served and the
server will return into its initial state.

Note that this paradigm does not allow for postprocessing to
be done, i.e., computations being performed which depend on
the service accepted, but taking place after the service's result
has been transmitted to the caller. This can be easily remedied
by changing the signatures of acceptADA and (>>) to become

acceptADA ::[Alta] > ADA a
(>>) :: Service xy = (x > ADA (y,ADA a}) - Alta

11

8.3. Implementation

Since the implementation of the ADA paradigm introduces no
new techniques, it is omitted. Each Service object is
implemented by a process which matches service requests and
service offers in a manner that is similar to, albeit simpler
than, that of the transaction manager. The difference is that
the decision which transactions to commit and which to abort
need not be made by one global authority but can be made by
the task executing acceptADA, since a requestADA statement
is not allowed to contain alternatives. The code required for
implementing the ADA paradigm is slightly more than half
the size of the CML paradigm's code.

9. Conclusion

The aim of the work that has been presented in this paper is to
design a minimal concurrent extension for Haskell and to
assess its usefulness. To this end, four very simple
concurrency primitives were built into Haskell using the
technique known from monadic 1/O. Apart from assuming
language support for monads, as found in Gofer, no changes
were made to Haskell; in particular, no new language features
related to concurrency were introduced.

To us, the preliminary conclusions of our work are the
following:

e Neither laziness, nor static typing, nor referential

transparency need be sacrificed on the altar of
concurency.

In terms of expressive power and readability, programs
written using current Haskell technology can compete
with programs written in concurrent functional languages
like Facile, Erlang and Concurrent ML.

Moreover, it seems that the two-phase approach 0
programming encouraged by monads has some particularily
worthwhile applications in concurrent programming.

References

[Andrews et al. 88] G.R. Andrews et al.: An Overview of the
SR Language and Implementation, ACM Transactions on
Programming Languages and Systems, Vol. 10, No.1, 1988

[Armstrong et al. 93] J. Armstrong et al.: Concurrent
Programming in Erlang, Prentice-Hall, 1993

[Carlson et al. 93] W.E. Carlson, P. Hudak, M.P. Jones: An
Experiment Using Haskell to Prototype "Geometric Region
Servers” for Navy Command and Control, Research Report
1031, Dept. of Computer Science, Yale University, 1993

[Hall et al. 92] C. Hall et al.: The Glasgow Haskeil Compiler:
A Retrospective, 1992 Glasgow Workshop on Functional
Programming, Ayr, 1992

[Hoare 85] C.A.R. Hoare:
Processes, Prentice-Hall, 1985

Communicating Sequential

[Hudak et al. 92] P. Hudak, S. Peyton Jones, P. Wadler
(editors): Report on the Programming Language Haskell:
Version 1.1, ACM SIGPLAN Notices, 27 (5), May 1992

[Ichbiah 83] J. Ichbiah (ed.): Ada Programming Language,
ANSI-MIL-STD-1815A, Ada Joint Program Office,
Department of Defense, Washington DC, 1983

[Inmos Ltd. 84] Inmos Ltd.: Occam Programming Manual,
Prentice-Hall, 1984

{Jones, Duponcheel 93] M. Jones, L. Duponcheel:
Composing Monads, Research Report YALEU/DCS/RR-1004,
Yale University, 1993

[Jones 94] M. Jones: Gofer 2.21/2.28/2.30 Release Notes,
available by anonymous ftp from ftp.cs.yale.edu

[Jones 95] M. Jones: Functional Programming with
Overloading and Higher-Order Polymorphism, First
Intemmational Spring School on Advanced Functional
Programming Techniques, LNCS 925, Springer Verlag, 1995

[Karlsson 81] K. Karlsson: Nebula, a Functional Operating
System, Chalmers University, Géteborg, 1981

[King, Wadler 92] D.J. King, P. Wadler: Combining
Monads, 1992 Glasgow Workshop on Functional
Programming, Ayr, 1992

[Reppy 88] J.H. Reppy: Synchronous Operations as First-
Class Values, ACM SIGPLAN Conference on Programming
Language Design and Implementation, 1988

[Perry 90] N. Perry: The Implementation of Practical
Functional Programming Languages, PhD thesis, Imperial
College, University of London, 1990

[Reppy 93] J.H. Reppy: Concurrent Programming with
Events: The Concurrent ML Manual, AT & T Bell
Laboratories, 1993

[Thomsen et al. 93] B. Thomsen et al: Facile Antigua
Release Programming Guide, Technical Report ECRC-93-20,
1993 European Computer-Industry Research Centre

[Wadler 92} P. Wadler: The Essence of Functional
Programming, 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1992

12

Concurrent Haskell: preliminary version

Simon Peyton Jones
Sigbjorn Finne
Department of Computing Science, University of Glasgow G12 8QQ
simonpj@dcs.glasgow.ac.uk

June 2, 1995

Abstract

Some applications are most easily expressed in a programming language that supports con-
currency, notably interactive and distributed systems. We propose extensions to the purely-
functional language Haskell that allows it to express explicitly concurrent applications; we
call the resulting language Concurrent Haskell.

The resulting system appears to be both expressive and efficient, and we give a number
of examples of useful abstractions that can be built from our primitives.

We have developed a freely-available implementation of Concurrent Haskell, and are now
using it as a substrate for a graphical user interface toolkit.

1 Introduction

In the xmh mail tool, the Compose button puts up a fresh window in which a new message can be
typed, and then sent. Even before it has been sent, though, the Compose button can be pressed
again, and a second message composed and sent.

The easiest way to express this interaction when implementing the mail tool uses concurrency:
each press of the Compose button spawns a concurrent process that is responsible for dealing
with that one message, and nothing else. In general, graphical user interfaces provide a powerful
motivation for supporting concurrency in a programming language.

In this paper we describe a concurrent extension to the functional language Haskell. Our principal
motivation is to provide a more expressive substrate upon which to build sophisticated I/O-
performing programs. Our earlier work showed how to use monads to express 1/O (Peyton Jones
& Wadler {1993]), and how the same idea could be generalised to accommodate securely encap-
sulated mutable state (Launchbury & Peyton Jones [1996]; Launchbury & Peyton Jones [1994]).
Concurrent Haskell represents the next step in this research programme, which aims to build a

bridge between the tidy world of purely functional programming and the gory mess of of I/O
intensive programs.

2 Setting the scene

Before proceeding, it is worth being clear about what this paper is about, and what it is not about.

First, we make a sharp distinction between (implicit} parallelism and (ezplicit) concurrency. The
goal of implicit parallelism is to increase performance by employing multiple processors. For
example, it allows the expression e;+es to be evaluated in parallel, by evaluating e; simultaneously

13

with es. Since Haskell has no side effects, the relative interleaving of their evaluation can have
no effect on the result. Furthermore, the runtime system may legitimately choose to evaluate the
expressions in sequence, instead of in parallel, if for example all the processors are busy.

The goal of our concurrent extension is quite different: we want to initiate concurrent input-
output-performing processes. Process initiation is completely explicit, and the relative rate of
execution may affect the overall I/O behaviour (which constitutes the “result”). For example, in
the mail-tool example the relative order of arrival of the two electronic mail messages will certainly
be influenced by the rate at which their managing processes execute after their Send button is
pressed.

Second, we are interested in concurrency as a substrate for interaction, and not as a model com-
putation. We have certainly gained useful insights from the design of process calculi such as the
m-calculus (Milner, Parrow & Walker [1992]), and (more particularly) the programming language
Pict (Pierce & Turner [1995]), but we have no ambition to encode everything as a process.

The closest comparison is with Reppy’s Concurrent ML, whose motivations were very similar to
ours {Reppy [1992]; Reppy [1991]). Our design has emerged as somewhat different to his, as we
will discuss later. The main reasons is, of course, that ML is strict, and I/O is done as a side-effect
of expression evaluation, while Haskell is non-strict, and I/O is done through a monad.

An important design principle was to choose primitives that can be implemented as simply and
efficiently as possible — even if they therefore indeed are somewhat primitive. This contrasts with a
design approach that attempt to provide as primitives the ideal abstractions from the programmer’s
point of view. We take this approach for two reasons. Firstly, the “ideal abstractions” may differ
from program to program or from programmer to programmer, so it seems better to provide the
“raw iron” from which these abstractions can be built, rather than to dictate what they should be.
Secondly, it is always possible to build nice abstractions on top of efficient primitives (provided
the set of primitives is rich enough}, but it is not possible to build efficient abstractions on top of
inefficient primitives, however nice.

3 The basic ideas

Concurrent Haskell adds two main new ingredients to Haskell:

o processes, and a mechanism for process initiation (Section 3.2); and
+ atomically-mutable state, to support inter-process communication and cooperation (Sec-
tion 3.3).

Before we discuss either of these, though, it is necessary to review the monadic approach to I/O
introduced by Peyton Jones & Wadler [1993], and adopted by the Haskell language in Haskell 1.3.

The semantics of Concurrent Haskell is discussed later, in Section 7.

3.1 A review of monadic I/O

In a non-strict language it is completely impractical to perform input/output using side-effecting
“functions”, because the order in which sub-expressions are evaluated — and indeed whether they
are evaluated at all — is determined by the context in which the result of the expression is used,
and hence is hard to predict. This difficulty can be addressed by treating an I/O-performing
computation as a state transformer; that is, a function that transforms the current state of the

14

world to a new state. In addition, we need the ability for an I/O-performing computation to
return a result. This reasoning leads to the following type definition:

type I0 a = World -> (a, World)

That is, a value of type I0 t takes a world state as input, and delivers a modified world state
together with a value of type t. Of course, the implementation performs the I/O right away —
thereby modifying the state of the world “in place”.

We call a value of type IO t an action. Here are two useful actions:

getChar :: IO Char
putChar :: Char -> I0 ()

The action getChar reads a character from the standard input, and returns it as the result of the
action. putChar takes a character and returns an action that writes the character to the standard
output.

Actions can be combined in sequence using the infix combinators >> and >>=:

> ;: I0a->I0b->1I10b
>>=:: 10 a => (a->I00b) =>10b

For example, an action that reads a character and then prints it twice is *:

getChar >»= \¢c =>
putChar ¢ >>
putChar ¢

The sequencing combinators, >> and >>=, feed the result state of their left hand argument to the
input of their right hand argument, thereby forcing the two actions (via the data dependency)
to be performed in the correct order. The combinator >> throws away the result of its first
argument, while >>= takes the result of its first argument and passes it on to its second argument.
The similarity of monadic I/O-performing programs to imperative programs is no surprise: when
performing I/O we specifically want to impose a total order on I/O operations.

It is often also useful to have an action that performs no I/0O, and immediately returns a specified
value:

return :: a =-> I0 a

For example, an echo action that reads a character, prints it, and returns the character read, might
look like this:

echo :: I0 Char

echo = readChar >»>= \¢ ->
writeChar ¢ >>
return ¢

As well as performing input/output, we also provide actions to create new mutable variables, and
then to read and write them. The relevant primitives are 2:

newMutVar :: MutVar a
readMutVar :: MutVar a -> I0 a
writeMutVar :: MutVar a

{The notation \c=->E, for some expression E, denotes a lambda abstraction. In Haskell, the scope of a lambda
abstraction extends as far to the right as possible; in this example the body of the \c-abstractionincludes everything
after the \c. '

?In reality the types a little more general than these, allowing state-manipulating computations to be encapsu-
lated, but we omit these details here. They can be found in Launchbury & Peyton Jones [1994]}.

15

A value of type HutVar t can be thought of as the name of, or reference to, a mutable location in

the state that holds a value of type t. This location can be modified with writeMutVar and read
with readMutVar.

So far we have shown how to build larger actions out of smaller ones, but how do actions ever get
performed — that is, applied to the real world? Every program defines a value main that has type
10 (). The program can then be run by applying main to the state of the world. For example, a
complete program that reads and echos a single line of input is:

main :: I0 ()

main = echo >>= \¢ ->
if ¢ == ’\n’
then return ()
else main

In principle, then, a program is just a state transformer that is applied to the real world to give
a new world. In practice, however, it is crucial that the side-effects the program specifies are
performed incrementally, and not all at once when the program finishes. A state-transformer
semantics for I/O is therefore, alas, unsatisfactory, and becomes untenable when concurrency is
introduced, a matter to which we return in Section 7.

More details of monadic I/O and state transformers caﬁ be found in Launchbury & Peyton Jones
[1996], Launchbury & Peyton Jones [1994], Peyton Jones & Wadler {1993]

3.2 Processes

Concurrent Haskell provides a new primitive forkI0, which starts a concurrent process?:

forkI0 :: I0 a -> 10 a

forkIO ais an action which takes an action, a, as its argument and spawns a concurrent process
to perform that action. The I/O and other side effects performed by a are interleaved in an
unspecified fashion with those that follow the forkI0. Here’s an example:

let
-— loop ch prints an infinite sequence of ch’s
loop ¢h = putChar ch >> loop ch

in
forkIO (loop ’a’) >>
loop 2’

The forkIO spawns a process which performs the action loop ’a’. Meanwhile, the “parent”
process continues on to perform loop ’z’. The result is that an infinite sequence of interleaved
’a’s and ’z’s appears on the screen; the exact interleaving is unspecified (but see Section 7.1).

As a more realistic example of forkIO in action, our mail tool might incorporate the following
loop:

mailLoop :: I0 ()

mailLoop
= getButtonPress >»>=\b ->
case b of
Compose ~> forkIO doCompose >>

mailLoop

3 We use the term process to distinguish explicit concurrency from implicit parallelism, for which we use the term
threads. A process is managed by the Haskell runtime system, and certainly does not correspond to a Unix process.

16

...other things

doCompose :: 10 () -- Pop up and manage Compose window
doCompose = ...

Here, getButtonPress is very like getChar; it awaits the next button press and then delivers a
value indicating which button was pressed. This value is then scrutinised by the case expression.
If its value is Compose, then the action doCompose is forked to handle the composition window,
while the main process continues with the next getButtonPress.

The following features of forkIQO are worth noting:

1. Because our implementation of Haskell uses lazy evaluation, forkIO immediately requires
that the underlying implementation supports inter-process synchronisation. Why? Because
a process might try to evaluate a thunk (or suspension) that is already being evaluated by
another process, in which case the former must be blocked until the latter completes the
evaluation and overwrites the thunk with its value.

2. Since the parent and child processes may both mutate (parts of) the same shared state
(namely, the world), forkI0 immediately introduces non-determinism. For example, if one
process decides to read a file, and the other deletes it, the effect of running the program
will be unpredictable. Whilst this non-determinism is not desirable, it is not avoidable;
indeed, every concurrent language is non-deterministic. The only way to enforce determinism
would be by somehow constraining the two processes to work on separate parts of the state
(different files, in our example). The trouble is that essentially all the interesting applications
of concurrency involve the deliberate and controlled mutation of shared state, such as screen
real estate, the file system, or the internal data structures of the program. The right solution,
therefore, is to provide mechanisms which allow (though alas they cannot enforce) the safe
mutation of shared state, a matter to which we return in the next subsection.

3. forkIC is asymmetrical: when a process executes a forkIO, it spawns a child process that
executes concurrently with the continued execution of the parent. It would have been possible
to design a symmetrical fork, an approach taken by Jones & Hudak [1993]:

symFork :: I0 a -> I0 b ~> 10 (a,b)

The idea here is symFork pi p2isan action that forks two processes, p1 and p2. When both
complete, the symFork pairs their results together and returns this pair as its result. We
rejected this approach because it forces us to synchronise on the termination of the forked
process. If the desired behaviour is that the forked process lives as long as it desires, then
we have to provide the whole of the rest of the parent as the other argument to symFork,
which is extremely inconvenient.

4. In common with most process calculi, but unlike Unix, the forked process has no name. We
cannot, therefore, provide operators to wait for its termination or to kill it. The former is
easily simulated (using an MVar, introduced next), while the latter introduces a host of new
difficulties (what if the process is'in the middle of an atomic action?).

5. As well as spawning m, forkIO m returns the result of m or, more operationally, it returns
a pointer to a suspension which will in due course evaluate to the result of m. In this way,
the child process can return a result to the parent. In practice we find that this is not very
useful, and it gives rise to some semantic complications, so we are considering giving forkI0
the simpler type

forkI0 :: I0 () -> I0 ()

17

3.3 Synchronisation and communication

At first we believed that forkIO alone would be sufficient to support concurrent programming
in Haskell, provided that the underlying implementation correctly handled the synchronisation
between two processes that try to evaluate the same thunk. Our belief was based on the idea
that two processes could communicate via a lazily-evaluated list, produced by one and consumed
by the other. Whilst processes can indeed communicate in this way, we found at least three dis-
tinct reasons to introduce additional mechanisms for synchronisation and communication between
processes:

1. Processes may need exclusive access to real-world objects such as files. The straightfor-
ward way to implement such exclusive access requires a shared, mutable lock variable or
semaphore.

2. How can a server process read a stream of values produced by more than one client process?
One way to solve this is to provide a non-deterministic merge operation, but that is quite
a sophisticated operation to provide as a primitive. Worse, it is far from clear that the
quest ends there; for example, one might also want several server processes to service a
single stream of requests, which seems to require a non-deterministic split primitive. We
wanted to find some very simple truly-primitive operations that can be used to implement
non-deterministic merge, and split, and anything else we might desire.

3. Writing stream-processing programs is throughly awkward, especially if a function consumes
several streams and produces several others, as well as performing input/output. One of
the reasons that monadic I/O has become so popular is precisely because stream-style 1/O
is so tiresome to program with. It would be ironic if Concurrent Haskell re-introduced
stream processing for inter-process communication just as monadic I/O abolished it for
input/output! We wanted to find a way to make communication between processes look
just as convenient as I/O; indeed, from the point of view of any particular process the other
processes might just as well be considered part of the external world.

One alternative we considered was to introduce channels as a new primitive data type, along with
send and receive primitives. This would satisfy (2) and (3) directly, and allow (1) to be modelled
using a channel. But (buffered) channels are relatively expensive beasts, and their expressiveness
is not always required.

Our final solution is to combine our work on mutable state (Launchbury & Peyton Jones [1994])
with the I-structures and M-structures of the dataflow language Id (Arvind, Nikhil & Pingali
{1989]; Barth, Nikhil & Arvind [1991]). First of all we have a new primitive type:

type MVar a

A value of type MVar t, for some type t, is the name of a mutable location that is either empty
or contains a value of type t. We provide the following primitive operations on MVars:

newMVar :: I0 (MVar a) creates a new MVar.

takeMVar :: MVar a -> IO a blocks until the location is non-empty, then reads and returns
the value, leaving the location empty.

putMVar :: MVar a -> a -> IO () writes a value into the specified location. If there are one
or more processes blocked in takeMVar on that location, one is thereby allowed to proceed.
It is an error to perform putMVar on a location which already contains a value. (Another
alternative would have been to make putMVar block in this case, but that is more expensive
to implement without making the language more expressive.)

18

A useful derived operation is swapMVar:

swapMVar :: MVar a -> a => I0 a

swapMVar var new = takeMVar var >>= \ old ->
putMVar var new >>
return old

The type MVar can be seen in three different ways:

e It can be seen as a synchronised version of the type MutVar introduced in Section 3.1.

o It can be seen as the type of channels, with takeMVar and putMVar playing the role of receive
and send.

e A value of type MVar () can be seen as a binary semaphore, with the signal and wait
operations implemented by putMVar and takeMVar respectively.

4 A standard abstraction: buffering

A good way to understand a concurrency construct is by means of examples. The following
sections describe how to implement a number of standard abstractions using MVars: using standard
examples (such as buffering) allows easy comparison with the literature.

The first example is usually a memory cell, but of course an MVar implements that directly.
Another common example is a semaphore, but an MVar implements that directly too.

4.1 A buffer variable

An MVar can very nearly be used to mediate a producer/consumer connection: the producer puts
items into the MVar and the consumer takes them out. The fly in the ointment is, of course, that
there is nothing to stop the producer over-running, and writing a second value before the consumer
has removed the first.

This problem is easily solved, by using a second MVar to handle acknowledgements from the
consumer to the producer. We call the resulting abstraction a CVar (short for channel variable).

type CVar a = (MVar a, -- Producer -> consumer
MVar ()) -- Consumer -> producer

newCVar :: IO (CVar a)

newCVar
= newMVar >>= \ data_var ->
newMVar >>= \ ack_var ->
putMVar ack_var () >>

return (data_var, ack_var)

putCVar :: CVar a -> a -> I0 ()

putCVar (data_var,ack_var) val
= takeMVar ack_var >>
putMVar data_var val

getCVar :: CVar a -> I0 a
getCVar (data_var,ack_var)

19

I Channel
Item Item
Read end | I Write end
First value Second value Third value
.
Figure 1: A channel with unbounded buffering
= takeMVar data_var >>= \ val ->
putMVar ack_var () >>

return val

4.2 A buffered channel

A CVar can contain but a single value. Next, we show how to implement a channel with unbounded
buffering, along with some variants. Its interface is as follows:

type Channel a

newChan :: IO (Channel a)

putChan :: Channel a -> a -> IO ()
getChan :: Channel a -> I0 a

The channel should permit muitiple processes to write to it, and read from it, safely.

The implementation is illustrated in Figure 1. The channel is represented by a pair of MVars
(drawn as small boxes with thick borders), that hold the read end and write end of the buffer:

type Channel a = (MVar (Stream a), -~ Read end
MVar (Stream a)) -- Write end (the hole)

The MVars in a Channel are required so that channel put and get operations can atomically modify
the write and read end of the channels respectively. The data in the buffer is held in a Stream;
that is, an MVar which is either empty (in which case there is no data in the Stream), or holds an
Item:

type Stream a = MVar (Item a)

An Item is just a pair of the first element of the Stream together with a Stream holding the rest
of the data:

data Item a = Item a (Stream a)

A Stream can therefore be thought of as a list, consisting of alternating Items and full MVars,
terminated with a “hole” consisting of an empty MVar. The write end of the channel points to
this hole.

20

Creating a new channel is now just a matter of creating the read and write MVars, plus one (empty)
MVar for the stream itself:

newChan = newMVar >>= \read ->
newMVar >>= \write ->
newMVar >>= \hole ->

putMVar read hole >>
putMVar write hole >>
return (read,write)

Putting into the channel entails creating a new empty Stream to become the hole, extracting the
old hole and replacing it with the new hole, and then putting an Item in the old hole.

putChan (read,write) val

= newMVar >>= \new_hole ->
takeMVar write >>= \old_hole ->
putMVar write new_hole >>

putMVar old_hole (Item val new_hole)

Getting an item from the channel is similar. Notice that getChan may block at the second
takeMVar if the channel is empty, until some other process does a putChan.

getChan (read,write)

= takeMVar read >>= \cts >
takeMVar cts >>= \(Item val new_cts) ->
putMVar read new_cts >>

return val

It is worth noting that any number of processes can safely write into the channel and read from
it. The values written will be merged in (non-deterministic, scheduling-dependent) arrival order,
and each value read will go to exactly one process.

Other variants are readily programmed. For example, consider a multi-cast channel, in which
there are multiple readers, each of which should see all the values written to the channel. All that
is required is to add a new operation:

dupChan :: Channel a -> IO (Channel a)

The idea is that the channel returned by dupChan can be read independently of the original, and
sees all (and only) the data written to the channel after the dupChan call. The implementation

is simple, since it amounts to setting up a separate read pointer, initialised to the current write
pointer:

dupChan (read,write)

= newMVar >>= \ new_read ->
takeMVar write >>= \ hole ->
putMVar write hole >>
putMVar new_read hole >>

return (new_read, write)
Another easy modification, left as an exercise for the reader, is to add an inverse to getChan:

unGetChan :: Channel a -> a => I0 ()

21

5 Control over scheduling

Suppose we wanted to implement a channel with bounded buffering; that is, one in which the
writer would block if there were more than a certain number of unread elements in the buffer. A
straightforward way to implement a bounded channel would be as a pair of an unbounded channel
and a quantity semaphore:

type BChannel a = (Channel a, QSem)

A quantity semaphore is an abstraction with the following interface:

type QSem
new(QSem :: I0 QSem
waitQSem :: QSem -> 10 ()

signalQSem :: GQSem -> IO ()

A QSem holds an integer, initially set to zero. waitQSem decrements this number, blocking if it
is already zero. signalQSem increments the number unless there are blocked processes, in which
case it frees one of them.

The QSem in a BChannel records how many available slots there are in the buffer, so it is initialised
with N calls to signalQSem, where N is the desired maximum buffer size. Then every attempt to
write into the channel calls waitQSem to gain permission to write, and similarly every successful
read calls signalQSem.

5.1 Implementing quantity semaphores

1t is surprisingly difficult to implement quantity semaphores in terms of binary semaphores. To
illustrate the difficulty, here is a typical failed attempt. Suppose we try to represent a QSem like
this: :

type‘QSem = (MVar Int, MVar ())

Consider a value (n, q) of type QSem. The first component, n, is an MVar recording how many
units remain in the semaphore. When a waitQSem finds there are no units left, it takes the MVar
g, which plays the role of a binary semaphore, and thereby blocks. A signalQSem that increments
the count from zero will write to ¢, so as to free the blocked process, which then repeats its
wait operation from scratch. Of course, there is a bug here, and a subtle one at that. Suppose
that two processes call waitQSem. Each inspects n and finds it to be zero but, before either of
them waits on ¢, two other processes completely execute signalQSem. Now g is full, so one of
the waiting processes will be able to continue, but the other will block indefinitely. Nor can the
test-and-then-block operation be done indivisibly, for then how would the lock on the quantity be
released?

It is, in fact, possible to implement a quantity semaphore using a fixed handful of binary
semaphores, but the implementation is very tricky indeed and not well known (Barz [1983]).
However, because we can freely allocate new MVars, we can give a much more straightforward
implementation:

type QSem = MVar (Int, [MVar ()])

A QSem is an MVar holding a pair (so that access to the whole pair is indivisible). The Int plays
the same role as before. The second component of the pair is a list of MVars, on each of which
precisely one process is blocked. 1t is an invariant of QSems that if the quantity is non-zero then
the list is empty.

22

If a waitQSen finds a zero count in the QSem, it creates a new, private, MVar, adds it to the list,
puts the resulting pair back in the §Sem’s MVar, and then blocks on its private MVar:

waitQSem sem
= takeMVar sem >>= \(avail, blocked) ->
if avail > O then
putMvar (avail-1,[3) >>

else
newMVar >>= \block ->
putMVar (0, block:blocked) >>

takeMVar block

The implementation of signalQSem is equally easy. It simply frees one blocked process if there
are any, and increments the count otherwise:

signalQSem sem
= takeMVar sem >>= \(avail, blocked) ->
case blocked of
{1 -> putMvar (avail+t, [J)
{block:blocked’) -> putMVar (0, blocked’) >>
putMVar block ()

5.2 Variable-munch quantity semaphores

An obvious generalisation of quantity semaphores is for waitQSem and signalQSem to specify how
much of the resource they claim or return respectively:

waitQSemN :: QSem -> Int -> I0 ()
signalQSemN :: QSem -> Int -> IO ()

Now, (signalQSemN s n) is equivalent to n successive calls to signalQSem, but if waitQSemN
were to be implemented in this way, deadlock might easily result. Why? Because two processes
executing a waitQSemN might each claim part, but not all, of the resource they require, thereby
depleting it to zero and deadlocking. So waitQSemN must grab all its requirement at once; if not
enough is available, it must block without grabbing any.

The new problem that this raises it that we may have a set of blocked processes, each with a
different resource requirement. It is easy to record this information, and use it to release only the
appropriate ones:

type QSem = MVar (Int, [{(Int, MVar ())])

The implementation of waitQSemN is essentially identical to waitQSem. signalQSemN is a bit more
interesting, because it may free zero or more blocked processes:

signalQSemN sem n
= takeMVar sem >>= \(avail, blocked) ->
free (avail+n) blocked >>= \(avail’, blocked’) ->
putMVar sem (avail’, blocked’)

where
free avail [J = return (avail,(d)
free avail ((req,block):blocked)
= if avail > req then
putMVar block () >>
free (avail-req) blocked

23

else
free avail blocked >>= \(avail’,blocked’) ->
return (avail’, block:blocked’)

The function free walks down the list of blocked processes, freeing any it can, and returning the
depleted resource supply and remaining blocked processes.

5.3 Priority

Suppose that many processes, some important and some less important, are blocked on a single,
empty MVar. Concurrent Haskell does not specify which of these processes will be awakened when
the MVar is written. How can we arrange that it is the more important ones that are awakened?
It would be possible to add some sort of priority mechanism to the language, but it turns out that
there is no need: exactly the same trick as we used for the quantity semaphore will work here. All
that is necessary is to build an abstraction that maintains a list of blocked processes (in the form
of private MVars on which they are blocked), each paired with its priority.

5.4 Summary

This section has demonstrated that we can readily “reify” scheduling decisions, allowing them to
be performed (when desired) in the language itself. The key idea is to represent a blocked process
as an empty MVar, so that scheduling the process can be achieved by writing to the MVar. Much
the same trick is used in the Pict language (Pierce & Turner [1995]).

6 Choice

Most process languages provide a choice construct — ALT in occam, select in Concurrent ML,
+ in the m-calculus — that allows a process to determine what to do next based on which of a
number of communications are ready to proceed. For example, in the r-calculus the process

x(v).P + y(w).Q

will either read a value v from channel x and then behave like P, or read a value w from channel y
and then behave like G, but not both. We say that x?v is the guard for the first alternative, and
similarly y?w guards the second. -

We do not provide a choice construct in Concurrent Haskell, for several reasons:

1. Most languages that provide choice restrict it in the following way: alternatives can only
be guarded with single primitive actions. As Reppy persuasively argues, such a restriction
interacts very badly with abstraction (Reppy [1995]). For example, we might want to guard
an alternative with a call to getChan, without knowing anything about how getChan is
implemented.

Of course, lifting this restriction is not straightforward. For example, it is no good synchro-
nising on the first primitive action performed by the guard: just because the first primitive
operation (doing a take on the read-end MVar) succeeds does not mean that the getChan
succeeds! Furthermore, if the guard can be a compound action, as getChan certainly is,
what should be done with partially completed actions from the non-chosen alternatives?

2. In our experience, the generality of choice is rarely if ever used.

24

3. Implementing a general choice construct can be costly, especially in a distributed setting,
and especially if guards can contain both read and write operations.

4. MVars already provide non-determinism, as we have seen in the case of channels with multiple
writers, and can be used to build application-specific choice constructs.

In short, contrary to initial impresssions, choice is expensive to implement, rarely used in its full
generality, and limits abstraction.

In the rest of this section we describe how we live without choice. In common with the programming
language Pict, we distinguish singular choice from iterated choice, the latter being by far the most
common in practice.

6.1 Iterated choice

A very common paradigm is for a process to service several distinct sources of work. On each
iteration the server chooses one of its clients, services the request, and then returns to select a
new client. Such a server would be understood by the concurrent object-oriented programming
community as a coneurrent object.

The important thing about iterated choice is that partially-executed guards of the alternatives
that “lose” — that is, are not selected — do not need to be undone, because they can simply
await the next iteration of the server.

As an example, suppose that the server is dealing with network traffic arriving from two dis-
tinct sources. The functions geti and get2 get a packet from the two sources respectively;
processPacket does whatever the server does to the packet:

getl,get2 :: I0 Packet
processPacket :: Packet -> I0 ()

Of course, get1 and get2 can be as complicated as necessary. They might consist of a large series
of 1/0 interactions, not just one primitive operation.

We can program the server by using a CVar as a rendezvous buffer. The server simply reads
packets from this buffer. Before it does so, it forks a process for each packet source that simply
reads a packet from its source and tries to write it into the buffer.

server :: IO ()
server
= ~-- Create empty buffer and full token
newCVar >>= \buf ->

-— Create 'sucking" processes
forkI0 (suck geti buf) >>
forkIO (suck get2 buf) >>

server_loop buf
server_loop :: CVar Packet -> IO ()
server_loop buf tok
= getCVar buf >>= \pkt ->
processPacket pkt >>

server_loop buf tok

suck :: I0 () => CVar Packet —> I0 ()

25

suck get_op buf
= get_op >>= \pkt ->
putCVar buf pkt >>
suck get buf

Of course, if the clients can be “told” how to write to the server the “suck” processes are not

necessary. In practice we find that doing so often breaks the abstraction that the client presents,
and hence the formulation given above is required.

6.2 Singular choice

On those occasions when we want to make a “one-off” choice among competing alternatives, we
put the obligation on the programmer to make the alternatives abortable. The way we choose to
express this obligation is by making the alternatives have type#

type Alternative a = Commitment a => IO ()
type Commitment a = IO (Maybe (a -> IO ()))
data Maybe a = Nothing

| Just a

An alternative takes an I/O action, of type Commitment, as an argument, which it performs exactly
when it wants to commit. This Commitment returns either Nothing, indicating that some other
alternative got there first and the alternative should abort, or Just reply where reply is an
action that should be applied to the result of the alternative. Exactly one alternative will receive
Just reply when it reaches its committment point; the others will all receive Nothing, wherenpon
they carry out any necessary abort actions and then die quietly.

It is now simple to define select:

select :: [Altermative a] -> ID a

select arms
= newMVar >>= \ result_var ->
newMVar >>= \ committed ->
putMVar committed :
(Just (putMVar result_var)) >>

lst

commit = swapMVar committed Nothing

do_arm arm = forkIO (arm commit)
in
mapI0 (do_arm committed result) arms >>
takeMVar result_var

7 Semantics

We have already hinted that regarding a program as a purely-functional state transformer gives
an inadequate semantics for input/output behaviour. For example, a program that goes into an
infinite loop printing ’a’ repeatedly, would just have the value L, even though its behaviour is
quite different to one that goes into an infinite loop performing no input/output.

4 The Maybe type is standard in Haskell, and corresponds to option in Standard ML. A value of type Maybe t is
either Nothing or is of the form Just v, where v has type t. Maybe types are useful for encoding values which may
or may not be there.

26.

The situation worsens when concurrency is introduced, since now multiple concurrent processes

are simultaneously mutating a single state. The purely-functional state-iransformer semantics
becomes untenable.

A way to avoid this dilemma is to provide an I/Q semantics based on labelled transition systems,
as is done by Gordon [1994]. Equivalence of programs is captured by bisimulation, and proved
using coinduction. It turns out that it is fairly straightforward to extend Gordon’s approach to
handle Concurrent Haskell. A desirable property is that we believe the semantics can be stratified,
so that the (large) purely-functional fragments of the program can be reasoned about as before,
separately from its I/O behaviour.

7.1 Fairness

In any real system the programmer is likely to want some fairness guarantees. What, precisely,
does “fairness” mean? At least, it must imply that no runnable process will be indefinitely delayed.

Is that enough? No, it is not. Consider a situation in which several processes are competing for
access to a single MVar. Assuming that no process holds the MVar indefinitely, it should not be
possible for any of the competing processes to be denied access indefinitely. One way to avoid such
indefinite denial would be to specify a FIFO order for processes blocked on an MVar, but that is
perhaps too strong. It would be sufficient to specify that no process can be blocked indefinitely on
an MVar unless another process holds that MVar indefinitely.

8 Implementation

The implementation of Concurrent Haskell has few surprises. It is an extension of the Glasgow
Haskell Compiler (GHC), a highly-optimising compiler for Haskell.

Concurrent Haskell runs as a single Unix process, performing its own scheduling internally. Each
use of forkIO creates a new process, with its own (heap-allocated) stack. The scheduler can
be told to run either pre-emptively (time-slicing among runnable processes) or non-pre-emptively
(running each process until it blocks). The scheduler only switches processes at well-defined points
at the beginning of basic blocks; at these points there are no half-modified heap objects, and the
liveness of all registers (notably pointers) is known.

A thunk is represented by a heap-allocated object containing a code pointer and the values of the
thunk’s free variables. A thunk is evaluated by loading a pointer to it into a defined register and
jumping to its code. When a process begins the evaluation of a thunk, it replaces the thunk’s
code pointer with a special “under-evaluation” code pointer. Accordingly, any other process that
attempts to evaluate that thunk while it is under evaluation will automatically jump to the “under-
evaluation” code, which queues the process on the thunk. When the original process completes
evaluation of the thunk it overwrites the thunk with its final value, and frees any blocked processes.

An MVar is represented by a pointer to a mutable, heap-allocated, location. This location includes
a flag to indicate whether the MVar is full or empty, together with either the value itself, or a queue
of blocked processes.

8.1 Other primitives

One tiresome aspect is that when a process performs ordinary Unix I/O might block the whole
Concurrent Haskell program, rather than just that process, which is obviously wrong. There seems
to be no easy way around this. We provide a primitive that enables a solution to be built, however:

27

waitInputFD :: Int -> I0 ()
waitInputFD blocks the process until the specified Unix file descriptor has input available.

The final useful primitive we have added allows a process to go to sleep for specified number of
milliseconds:

delay :: Int -> I0 ()

8.2 Garbage collection

An interesting question is the following: is it ever possible to garbage-collect a process? At first
its seems that the answer might be quite complicated: after all, process garbage collection is a
notoriously tricky business (see, for example, Hudak [1983}).

Fortunately, it turns out to be rather easy in Concurrent Haskell. The principle is as follows:
a process can be garbage-collected only if it can perform no further side effects. Here are two
immediate consequences:

1. A runnable process cannot be garbage collected, because it might perform more I/0.

2. A process blocked on an MVar can be garbage-collected if that MVar is not accessible from
another non-garbage process. Why? Because the blocked process can only be released if
another process puts a value into the blocking MVar, and that certainly can’t happen if the
MVar is unreachable from any non-garbage process.

This leads us to a very simple modification to the garbage collector:

e When tracing accessible heap objects, treat all runnable processes as roots.

e When an MVar is identified as reachable, identify all the processes blocked on that MVar as
reachable too {and hence anything reachable from them).

Like any system, this one is not perfect; for example, an MVar might be reachable even though no
further writes to it will take place. It does, however, do as well as can be reasonably expected,
and it succeeds in some common cases. For example, a server with no possibility of future clients
will be garbage-collected, since it is blocked on its input MVar and no other process now has that
MVar.

9 Comparison with related work

We originally borrowed the idea of MVars directly from Id, where they are called M- structures.
Id’s motivation is rather different to ours: M-structures are used to allow certainly highly-parallel
algorithms to be expressed that are difficult or impossible to express without them (Barth, Nikhil
& Arvind [1991]). However the basic problem they solve is identical: convenient synchronisation
between parallel processes. We also share with Id the expectation that programmers should rarely,
if ever, encounter MVaxs. Rather, MVars are the “raw iron” from which more friendly abstractions
can be built.

One big difference between Concurrent Haskell and Id is that in Concurrent Haskell operations on
MVars can only be done in the I/O monad, and cannot be performed in purely-functional contexts.
In Id, since everything is eventually evaluated, side effects are permitted everywhere.

28

It is interesting to compare MVars with ordinary semaphores, when each are used to provide mutual
exclusion. Using semaphores (or mutex locks in ML-threads) one must remember to claim the
lock before side-effecting the data it protects; that is, the mutex implicitly protects the data. With
an MVar, the protected data is ezplicitly inside the MVar, which means that one cannot possibly
forget to claim the lock before side-effecting it! Not only that, but the connection between the
lock and the data it protects is more explicit: MVar t rather than (t, mutex). Lastly, mutual
exclusion using a semaphore requires at least two mutable locations: the semaphore and the data.
Using an MVar usually collapses these two locations into one, and thereby also reduces the number
of side-effecting operations. In complex situations implicit locking may still be unavoidable, but
MVars simplify the common case.

9.1 Synchronous vs asynchronous

Viewed as a process language, MVars occupy an interesting and unusual niche. Generally, concur-
rent languages have evolved into two groups:

e Most concurrent languages provide synchronous communication. Examples include:
CSP{Hoare [1985]), occam (Ltd [1984]), CCS (Milner [1989]), Concurrent ML (Reppy [1992]),
and the m-calculus (Milner, Parrow & Walker {1992]). A communication involves a ren-
dezvous between the sending and receiving process. There is no implict buffering on a
channel, indeed no buffering at all.

e A very few concurrent languages provide asynchronous communication as primitive. The
only examples known to us are both recent: the asynchronous m-calculus (Honda & Tokoro
(1992]) and Pict (Pierce & Turner [1995]). Processes communicate through channels that
provide infinite buffering. Sending and receiving are therefore asynchronous: the sending
process can proceed without waiting for a recipient to receive the message. The reason that
asynchronous languages have been unpopular is perhaps because all the early attempts to
define asynchronous langauges tried to preserve message ordering in a channel, which turns
out to result in a complicated semantics. In contrast, the asynchronous n-calculus and Pict
define channels as holding a multiset of messages rather than a sequence; that is, messages
may be received in a different order to that in which they are sent.

Concurrent Haskell occupies an intermediate position between these two extremes. An MVar is, in
effect, a channel that holds either zero or one messages. Receiving is asynchronous if the MVar is
full and synchronous if it is empty. Sending is asynchronous if the MVar is empty (and erroneous
if it is full). There is no message-ordering issue because an MVar can contain at most one message.

Synchronous languages have three big disadvantages. The first is that it leads to a profligate use
of processes. Process calculi usually start from the premises that “everything is a process” and
that “processes are cheap”. In practice, processes are not so cheap. Modern processors only work
well when quite a bit of process state is migrated onto the CPU (into registers or the cache), and
process switches inevitably involve replacing a lot of this state. For this reason we would prefer to
limit concurrency to genuinely concurrent activities, rather than use it to implement everything.

In a synchronous language, one or more extra processes are requird to implement almost every
concurrency abstraction. For example, a buffer or a semaphore requires a process to administer
it, and a multicast buffer requires an extra process for each read port. In contrast, not one of the
concurrency abstractions we have presented in this paper requires any processes of its own. They
do all their work under the auspices of the process that calls them. Asynchronous communication,
even with only a single-item buffer, seems to allow us to program passive abstractions (such as
buffers) with efficient passive objects (such as channels or MVars).

29

Not only is it inefficient to use new processes for passive objects, but it is also complicated to
understand and program. Compare, for example, Reppy’s implementation of a multicast buffer
(Reppy {1992, Section 5.2]) with that given earlier.

A second disadvantage of synchronous languages is that choice is not optional. In the absence of
MVars (or channels or some similar feature) choice is absolutely required to implement memory
locations, buffer, servers, and so on.

The third disadvantage of synchronous communication is that it becomes much harder to imple-
ment in a distributed setting, especially where choice is involved as it must inevitably be. (Why?
Because if a choice contains both sends and receives, it may play hopscotch with a similar choice
in another process (Reppy {1992]).) In the Occam language these difficulties are eased by allowing
only receive operations as guards in a choice. Reppy argues convincingly that this is a serious
limitation, so Concurrent ML bites the bullet and allows unrestricted guards. On the other hand,
when discussing distributed systems he suggests that CML is inappropriate, and instead shows how
to add Linda-style tuple-spaces to CML (Reppy [1995]). Whilst this may be a good approach,
an asynchronous language at least allows the possibility of uniformly extending to distributed
systems.

In spirit and programming style, therefore, Concurrent Haskell is much closer to the asynchronous
languages. The distinction between a one-element channel and an infinitely-buffered channel is
much smaller than that between synchronous and asynchronous. Nevertheless, it is somewhat
more efficient to implement an MVar than an infinitely-buffered channel, and of course the latter
can be built from the former. One criticism that is sometimes levelled at asynchronous systems
is that the first symptom of a bug is often message-buffer exhaustion, due to messages being sent
without being received; the symptoms are “likely to be far removed in time (and possibly space)
from the source of the problem” (Reppy [1992Section 3.3.3]). Concurrent Haskell shares with
synchronous systems immediate failure on such protocol failures. Indeed, because the effect of too
many putMVars is an error message rather than deadlock, errors may be found even more directly.
(This is pure speculation at present!)

9.2 Concurrent functional languages

Two of the first functional languages providing concurrency were PFL (Holmstrom [1983]) and
Amber (Cardelli [1986]). Both supported concurrency with communication along synchronous,
typed channels.

John Reppy’s Concurrent ML is, as the name suggests, the ML counterpart — indeed predecessor
— of Concurrent Haskell (Reppy {1992]; Reppy [{1991]). CML is an influential synchronous con-
current language whose war-cry is “choice without loss of abstraction”. It achieves this goal using
a new abstract data type of events, (a subset of) whose signature is:

type ’a chan
type ’'a event

val receive : ‘a chan -> ’'a event
val transmit : ’a chan -> ’a -> unit event

val guard : (unit -> ’a event) -> ’a event
val wrap : (’a event *# (’a -> ’b)) => ’b event

val choose : ’a event list -> ’a event
val sync : ’a event -> ’a '

receive and transmit are the primitive events, guard and wrap add pre-synchronisiation and

30

post-synchronisation actions respectively to an event, choose combines a list of events into a single
event, and sync actually synchronises on an event. In many ways, a CML value of type event t is
rather like a Haskell I/O action of type I0 t. Both are first-class values that can be synchronised
on (resp. performed) repeatedly.

An important difference is that CML events contain an implicit “synchronisation point” that is a
single primitive action, encapsulated in pre- and post-synchronisation actions. Haskell I/O actions
have no such structure. The corresponding disadvantage is that one writes different CML code to
perform a protocol depending on whether the result is simply a unit-valued function that is called
to perform side effects, or an event-valued function that is activated by sync. The latter are not
as easy to write as the former, and the mere fact of the difference might be considered as a blow
to abstraction.

FACILE is another extension of ML with concurrency (Giacalone, Mishra & Prasad [1989]), though
one which is quite a bit more complex than either CML or Concurrent Haskell. Like CML, FACILE
employs synchronous communication.

ML-threads is a concurrency package for ML developed by Cooper & Morrisett [1990]. It provides
threads, together with mutex locks and condition variables to manage thread interaction. Concur-
rent Haskell has a similar flavour, although it seems somewhat simpler: for example, Concurrent
Haskell provides only MVars rather than both mutexes and condition variables.

Using Gofer, (Jones & Hudak [1993]) have recently explored issues similar to Concurrent Haskell,
introducing a (symmetric) fork primitive (Section 3.2) and synchronous channels into a monadic
setting. This work differs from ours in that the emphasis is on expressing parallel algorithms
succintly rather than writing concurrent programs that engage in messy interaction with the
outside world. Evaluating two monadic sub-computations in parallel, by ‘sparking’ them using a
symmetric fork primitive is convenient for many parallel algorithms, but this synchronous view
of process is not appropriate in the concurrent case (Section 3.2). Communication between these
‘sparked’ processes is done on exclusive, synchronous channels, considering it an error when more
than one send occurs on a channel without a matching receive. This restriction is quite severe in
a concurrent setting, as resource managers such as a window system that encapsulate and provide
controlled access to some shared resource, cannot be readily expressed.

It goes without saying that we share with all of these languages the benefits of higher-order
functions, polymorphic typing, the ability to pass any value along a channel (including functions,
channels, and as-yet-unevaluated suspensions).

9.3 Functional operating systems

The early 1980s saw a great deal of work done on functional operating systems. Typical was the
work of Jones and Henderson (Henderson [1982}; Jones [1983]; Jones [1984]), and Stoye’s “sorting
office” (Stoye [1985]). All of this work was based on the idea of processes communicating through
streams of messages, with a non-deterministic merge primitive, or in Stoye’s case an external
sorting office, that provided a choice construct. Programming using streams is not particularly
easy, however, requiring a great deal of tagging and untagging to keep the plumbing straight.

Cupitt’s made an advance over stream processing by introducing a form of monadic I/O (actually
presented using continutations), with explicit process forking much like forkI0 (Cupitt [1992]).
Communication between processes was solely by sending messages to the process; that is, every
process had but a single input port through which it had to multiplex all its communication.

31

9.4 Concurrent object-oriented languages

Much the largest group of asynchronous concurrent languages is the that of actor languages (Agha
[1986]), and concurrent object-oriented languages (Agha [1990]) such as ABCL (Yonezawa [1990]).
It would be interesting to undertake a systematic comparison of them with Concurrent Haskell,
but we have not yet done so .

10 Conclusions and further work

We have described a very small and simple extension to Haskell that allows concurrent programs
to be written. Using this substrate we are now well advanced in the construction of a graphical
user interface toolkit, Haggis (Finne & Peyton Jones [1995]). Indeed this application has been the
driving force for Concurrent Haskell throughout, just as eXene was used as a test case for CML.
Despite the apparently primitive nature of our single synchronisation mechanism, MVars, we have
found the language surprisingly expressive.

One obvious topic for further work is a semantics for Concurrent Haskell, as discussed in Section 7.

Another development we are actively working on is a distributed, multiprocessor implementation
of Concurrent Haskell.

Concurrent Haskell is freely available by FTP. (Connect to ftp.dcs.glasgow.ac.uk, look in
pub/haskell/glasgow, and grab any version of Glasgow Haskell from 0.24 or later.)

A cknowledgements

We are grateful to Benjamin Pierce, David Turner and Luca Cardelli, who all gave us very help-
ful feedback on earlier versions of the paper. Thanks, too, to Jim Mattson, who implemented
concurrency and MVars in Glasgow Haskell.

References

G Agha[1986], Actors: a model of concurrent computation in distributed systems, MIT Press.
G Agha[Sept 1990], “Concurrent object-oriented programming,” Comm ACM 33, 125-141.

Arvind, RS Nikhil & KK Pingali [Oct 1989], “I-structures - data structures for parallel computing,”
TOPLAS 11, 598-632.

PS Barth, RS Nikhil & Arvind {Sept 1991}, “M-structures: extending a parallel, non-strict func-
tional language with state,” in Functional Programming Languages and Computer Archi-
tecture, Boston, Hughes, ed., LNCS 523, Springer Verlag, 538-568.

HW Barz [Feb 1983], “Implementing semaphores by binary semaphores,” SIGPLAN Notices 18,
39-45.

L Cardelli {1986], “Amber,” in Combinators and functional programming languages, G Cousineau,
PL Curien & B Robinet, eds., LNCS 242, Springer Verlag.

32

EC Cooper & JG Morrisett [Dec 1990], “Adding threads to Standard ML,” CMU-CS-90-186, Dept
Comp Sci, Carnegie Mellon Univ.

J Cupitt [Aug 1992], “The design and implementation of an operating system in a functional
language,” PhD thesis, Computing Lab, University of Kent.

S Finne & SL Peyton Jones [April 1995}, “Composing Haggis,” Department of Computing Science,
Glasgow University.

A Giacalone, P Mishra & S Prasad [1989], “Facile: A Symmetric Integration of Concurrent and
Functional Programming,” International Journal of Parallel Programming 18.

AJ Gordon [1994], in Functional Programming and Input/Output, Distinguished Dissertations in
Computer Science, Cambridge University Press.

P Henderson [1982], “Purely functional operating systems,” in Functional programming and its
applications, Darlington, Henderson & Turner, eds., CUP.

CAR Hoare [1985], Communicating sequential processes, Prentice Hall.

S Holmstrom [1983], “Polymorphic type systems and concurrent computations in functional lan-
guages,” PhD thesis, Department of Computer Science, Chalmers University.

K Honda & M Tokoro [1992], “On Asynchronous Communication Semantics,” in ECOOP 91 Work-
shop on Object-based Concurrent Computing, Springer-Verlag LNCS.

Paul Hudak [Aug 1983], “Distributed task and memory management,” in Symposium on Principles
of Distributed Computing, NA Lynch et al, ed., ACM, 277-289.

MP Jones & P Hudak[Aug 1993], “Implicit and explicit parallel programming in Haskell,”
YALEU/DCS/RR-982, Yale University.

Simon B Jones [Aug 1983], “Abstract machine support for purely functional operating systems,”
PRG-34, Programming Research Group, Oxford.

Simon B Jones [Sept 1984}, “A range of operating systems written in a purely functional style,”
TR 16, Dept Comp Sci, Univ of Stirling, Companion to ” Abstract machine support for
purely functional operating systems”. .

J Launchbury & SL Peyton Jones [1996], “State in Haskell,” Lisp and Symbolic Computation (to
appear).

J Launchbury & SL Peyton Jones[June 1994], “Lazy functional state threads,” in SIGPLAN
Symposium on Programming Language Design and Implementation (PLDI’94), Orlando,
ACM.

INMOS Ltd [1984], Occam Programming Manual, Prentice Hall.

R Milner [1989], Communication and concurrency, Prentice Hall.

R Milner, J Parrow & D Walker [1992], “A calculus of mobile processes (Parts I and II),” Infor-
mation and computation 100, 1-77.

SL Peyton Jones & PL Wadler [Jan 1993], “Imperative functional programming,” in 20th ACM
Symposium on Principles of Programming Languages, Charleston, ACM, 71-84.

33

BC Pierce & DN Turner [1995], “Concurrent Objects in a Process Calculus,” in Theory and Prac-
tice of Parallel Programming (TPPP), Sendai, Japan, Springer Verlag LNCS.

J Reppy [June 1992], “Higher-order concurrency,” PhD thesis, TR 92-1285, Cornell University.
JH Reppy [1995], “First-class synchronous operations,” AT&T Bell Laboratories.

JH Reppy [June 1991], “CML: a higher-order concurrent language,” in ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), ACM.

W Stoye [Dec 1985], “The implementation of functional languages using custom hardware,” PhD
thesis, TR81, Computer Lab, University of Cambridge.

A Yonezawa, ed. [1990], ABCL: an object-oriented concurrent system: theory, language, program-
ming, implementation, and application, MIT Press.

34

Semantics of pH: A parallel dialect of Haskell*

Shail Aditya® Arvind® Lennart Augustsson®
MIT MIT Chalmers University
Jan-Willem Maessen® Rishiyur S. Nikhil®

MIT DEC, CRL
Abstract

The semantics of kernel pH are defined in the form of a parallel, normalizing interpreter.
A description of I-structure and M-structure operators is also given within the same frame-
work. Semantics of barriers in pH are presented by translation into the kernel language without
barriers. The framework presented is also suitable for multithreaded compilation of pH.

1 What is pH?

pH [11] is a parallel variant of the Haskell programming language [8] with extensions for loops,
synchronized side-effect operations, and explicit sequentialization. This paper discusses the opera-
tional semantics of these variations and extensions. The concrete syntax of pH is presented in the
preliminary pH manual [11] and will track future Haskell versions.

There is more than one approach to parallel implementations of functional languages. For
example, it is possible to exploit the implicit parallelism of a Haskell program by concurrent evalu-
ation of the arguments of strict operators. The absence of side effects ensures that this concurrent
evaluation cannot change the result. Strictness analysis techniques widen the scope of this idea,
by allowing parallel evaluation of any strict function argument. Further, it is possible to provide
programmer annotations to indicate sub-expressions which should be evaluated in parallel, even
when the compiler cannot prove that the value of all the sub-expressions will be required. Unlike
similar annotations in imperative languages, the annotations can only affect termination, and not
the results (if any). All these approaches take demand-driven evaluation as the starting point: in
the absence of annotations, an expression is evaluated only if its value is required.

An alternative approach is to use a parallel evaluation order which reduces all redexes in parallel,
not only those whose value is required. This strategy also implements non-strict semantics, provided
that no redex has its evaluation delayed indefinitely. A parallel evaluation strategy is followed by
the Id programming language [10], in which any redex not in the body of a conditional or lambda
abstraction is reduced. pH follows the same strategy. A brief description of pH may be given as
follows.

*The research described in this paper was funded in part by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research contract N00014-92-]-1310.

SMIT Laboratory for Computer Science, Cambridge, MA 02139. Email: {shail,arvind,earvig}@lcs.mit.edu.

*Department of Computer Science, Chalmers University, Goteborg, Sweden. Email: augustss@cs.chalmers.se.

¢Cambridge Research Laboratory, Digital Equipment Corporation, One Kendall Square, Building 700, Cambridge,
MA 02139. Email: nikhil@crl.dec.com.

35

pH = Haskell syntax and type system + Id evaluation strategy + Id side-effect operators

In practice, implementations of pH may not guarantee that every redex is reduced eventually.
This will imply that some pH programs may fail to give a result and terminate when they would
do so in “traditional” Haskell. However, if pH gives a proper (non-error, non-bottom) result for a
particular program then so does “traditional” Haskell, and these results are the same.

1.1 Why pH?

pH is an attempt to bring together the lazy functional community (as represented by Haskell) and
the datafiow community (as represented by Id and Sisal {7]). It is hoped that by sharing a common
base language, it will be easier to share ideas and implementations and freely exchange programs.
By doing so, programmers need only master a single syntax and type system. There are important
differences between pH and Haskell, however. By choosing Haskell as a framework, it becomes
easier to isolate and therefore understand the differences between the two.

1.2 Structure of pH

pH is a layered language. pH(F) is the purely-functional subset of pH. Its main addition to Haskell
is for- and while-loops. For example, one could compute the sum of the integers between 1 and n
as follows.

Example 1:
let sum = 0
in for i <- [1..n] do
next sum = sum + i
finally sum

Loops are purely functional, and can easily be translated into tail-recursive functions. The eager
semantics of pH permits tail-recursion to be implemented more efficiently than lazy semantics.

pH(I) adds I-structures [4] to pH(F). I-structures are single-assignment data structures that
allow fine-grain producer-consumer synchronization among parallel tasks. pH(I) preserves deter-
minacy, i.e., confluence, although the language is no longer referentially transparent.

pH(M) adds M-structures [6] to pH(I). M-structures are multiple-assignment data structures
that allow mutual exclusion synchronization. M-structures introduce side-effects and non-determinacy.
pH(M) also provides the ability to group statements for sequential execution using barriers in order
to avoid unwanted race conditions among side-effect operations.

Full pH is the same as pH(M).

1.3 Outline

The rest of this paper concentrates on semantic issues in which pH differs from Haskell. Section 2
describes the parallel evaluation order of pH in the context of a kernel language and its multi-
threaded interpreter. In Section 3 we extend the kernel language with I-structure and M-structure
operations. Section 4 defines the semantics of barriers by translating them into the kernel language
using explicit termination signals from side-effect operations. Finally, Section 5 concludes with
some notes about current implementations.

36

c € Constant

LHitizy,z... € Identifier

SE,X,Y,Z,... € Simple Expression

E € Expression

9 € Primitive Fn. with n arguments

CF™ € Data Constructor with n arguments

S € Statement

Constant := Integer | Float | Boolean | Nil

SE := Identifier | Constant

PF! := hd|tl|select k

PF? = =]]<[>]

CF? := Cons

CF™ := make._n_tuple

E = SE|PF*(zy,...,z,) | CF™(21,...,%xn)
| Az. E | case(z, Ey,..., Ey)
| ap(f, 2) | sap(/, 2) | Block

Block u= {Sinz}

S u= e|lz=F|S81;...;5

Program = Block -

Figure 1: The kernel pH language.

2 Parallel Evaluation Order

pH follows an eager evaluation strategy: all tasks execute in parallel, restricted only by the data
dependencies among them. This strategy automatically exposes large amounts of parallelism both
within and across procedures. This is in contrast with a lazy evaluation strategy followed by Haskell:
only those tasks are evaluated which are required to produce the result. This strategy imposes a
sequential constraint on the overall computation, although the exact ordering of tasks is decided
dynamically.

In this section we describe the eager evaluation model of pH by giving a parallel interpreter
for the kernel language of pH. Our interpreter is based on a parallel abstract machine, which
is in the spirit of the G-machine and its later variants [9, 5, 12]. We first describe the kernel
language (Section 2.1) and then our parallel abstract machine (Section 2.2) and its instruction set
{Section 2.3). It is followed by a description of the interpreter (Section 2.4).

2.1 The Kernel pH Language

The abstract syntax of the kernel pH language is shown in Figure 1. The kernel language ensures
that every intermediate result of a complex expression is explicitly named using an identifier. This
is convenient for expressing and preserving the sharing of subexpressions within a computation [3].
In order to simplify the description of the evaluation rules in this paper, we do not allow constants
to appear as arguments to primitive functions.

Aside from the usual arithmetic primitives, the kernel language provides functions for con-
structing and selecting elements of lists and n-ary tuples. The language also provides n-ary case

37

¢t € Instruction
¢ € Location
v & Value == Constant | Location | (Az. E, p)
p € Environment Frame = Identifier — Location
o € Store = Location — {(full v) | (defer §s)}
w € Thread = Code x Environments
6 € Suspension = Thread
6s € Suspensions = List(Thread)
ws € Work Queue = List(Thread)
Accumulator = Value
ts € Code = List(Instruction)
ps € Environment = List(Environment Frame)
Processor = Accumulator X Code X Environment
Machine = List(Processor) x Work Queue x Store
Processor Global Memory
State Accumulator Code Environment | Work Queue Store
Initial (starting proc.) - 1Sg (] [] {}
Initial (other proc.) - (] [] [] {}
Final (all proc.) - (] [(] o
Error (any proc.) storerr '8 ps ws a

Where tsg = [eval(Program), print, schedule]

Figure 2: Dynamic entities used by the abstract machine.

expressions which select one of the branches based on the value of the dispatch identifier, nested
A-expressions which may contain free identifiers, a general function application operator ap, and a
parallel block construct that controls lexical scoping and enables precise sharing of subexpression
values. The order of bindings in a block is not significant. The identifier following the in keyword
in a block expression denotes the result of the block.

2.2 A Parallel Abstract Machine

Our parallel abstract machine consists of a number of sequential processors connected to a global
shared memory. The important features of our machine are described in Figure 2. Each memory
location can hold a value or a list of suspended threads, and is tagged with its status. A full location
contains a value. A newly allocated location is tagged with defer and it is initialized to be empty.
A wvalue is either a constant, an allocated store location, or a function closure. The global memory
holds three types of entities: heap storage, activation frames and a work queue which is a list of
threads, that is, (code, environment) pairs.

The processor state consists of code, environment, and an accumulator which can hold a value.
Any idle processor can get work by dequeuing a thread from the work queue and loading its code
and environment space from the thread. Initially, it is assumed that the whole machine is empty. A
program E is started by executing the following code on some processor in the empty environment.

[eval(E), print, schedule]

38

The eval instruction interprets an expression by structural decomposition in a given environ-
ment. Environments map program identifiers to frame locations, and are structured in a stack like
manner. eval of a block allocates a new activation frame in the global memory to store the values
of the bound identifiers of the block. It also creates a new environment frame for these identifiers
and pushes it on the processor environment. The bound identifiers of the block point to locations
in the newly allocated activation frame. New environment frames (but not activation frames) are
also created in case of A-expressions and function applications. The sharing of computations is
achieved entirely through the activation frame locations: all references to an identifier within the
scope of its definition lead to the same frame location. The separation of environment frames and
activation frames permits environments to be copied freely and therefore allows us to treat function
closures in the same way as simple values.

At each step, the processor executes the instruction at the head of the current code sequence,
modifying the processor state in the process. The instruction set of the processor has instructions
to load and store the accumulator, perform arithmetic and logic operations on store locations,
and suspend the current thread in case of missing values. This is in contrast with lazy functional
languages where unevaluated locations contain thunks that compute its value on-demand. Typically
an instruction is popped from the code sequence after execution, but some instructions may also
add new instructions to the code sequence. This is the primary way to alter the control low. There
are also instructions to push and pop environment frames, and enqueue and dequeue threads from
the work queue.

The work queue is maintained as a FIFO queue in order to guarantee fair scheduling. This
queue must be manipulated atomically. It is easy to modify the machine so that each processor
has its own work queue which is maintained in a FIFO manner. In case a processor goes idle, it
can pick up a thread from the back of the work queue of any other processor. As long as we do not
arbitrarily suspend the currently running thread on any processor, this strategy still implements

a fair schedule while considerably reducing the contention due to the atomic manipulation of the
work queue.

The overall state of our parallel machine is described by the state of all the processors and the
global memory and the work queue. Figure 2 also shows the initial, the final and the error states of
the processors of our machine. The machine starts by scheduling an initial sequence of instructions
on some processor that evaluates the program, prints the result present in the accumulator!, and
then continues to schedule the remaining work present in the work queue. This emphasizes the
non-strict nature of this evaluation model: the program may print a result before final termination.
The machine halts when both the code sequence and the work queue are empty. The machine is
said to be deadlocked when there are suspended computations in the store but there is no work
to be done. If there are no suspended computations, then the machine is said to have terminated
normally. An error may be generated during execution due to exceptional conditions such as a
type mismatch, an arithmetic overflow, or out of bounds access to data structures. However, if an
attempt is made to write into a memory location that is already full then the whole machine is said
to have reached an error state as shown in Figure 2.

2.3 Instruction Set

Figure 3 shows the instructions used by our interpreter. We will describe the semantics of these
instructions in terms of a state transition involving a 5-tuple (v,:s,ps,ws,o). The first three

'The main thread is the only place where a print instruction may appear.

39

eval(E) 2 Evaluate F in the current environment and leave the result in the

accumulator
touch(£) i Check if the location £ is full, if not suspend the current thread
rtouch(£) 2 Check if the location £ is full, if not suspend the current thread

including the rtouch instruction. (Thus, rtouch can be retried when
the thread is activated again).

load(£) :: Load the accumulator with the value present in the location € (the
location must be full)

take(£) 2 Load the accumulator with the value present in the location £ and
mark the location empty (the location must be full)

loadi_k(£) :: Load the accumulator with the value in the location at an offset

k from the location pointed to by ¢, or suspend the thread if the
location is empty

store({) 2 Store the value in the accumulator in the location £ and reactivate
any suspensions

storerr(£) 2 Generate an error if the location £ is full

PF™ (€1, ...,4n) :: Apply strict primitive operator PF™ (such as +) to the values at
locations £y,..., ¢, (the locations must be full)

switch(€z,¢81,...,t8,) = Switch to the branch indexed by the value at location ¢,

pushenv (p) = Push the environment frame p onto the environment stack

popenv :: Pop the top-level environment frame from the environment stack

schedule = Schedule the next thread from the work queue

print :x Print the accumulator contents

Figure 3: The instruction set of the parallel abstract machine.

elements of the tuple refer to the accumulator carrying a value v, the code sequence is, and the
environment ps on the processor where the instruction is executed. The last two elements of the
tuple are the work queue ws, and the dynamic store ¢ which are shared amongst all processors.

All the instructions that modify the global store must be executed atomically. That is, while a
processor reads and modifies a given location within the store, no other processor should be allowed
to read or write that location. Transactions on different locations may proceed in parallel. In case

where an instruction sequence ¢s has to be executed atomically, we will indicate that by writing
atomic(ts).

Touch Instructions

The touch instruction tests the status of a location. If the status is full, it does nothing. Oth-
erwise, (status is defer) the code sequence following the current instruction is suspended at that

location along with the current environment. The rtouch instruction is similar except that the
touch operation is retried.

" 40

touch:

(. touch(f):is ps ws o[l (fullv)])
(- s ps ws o)

(. touch() :us ps ws o[l (defer &s)])
(- T[schedule] ps ws o€+ (defer (15, ps) : 83)))

rtouch:
(- rtouch(€) :is ps ws oll— (full 1)])
(- s ps ws o)

(. rtouch(f) :1s ps ws o[l (defer 6s)])
(_ [schedule] ps ws o[~ (defer (rtouch(f) : s, ps) : és))

Note that these instructions do not start the evaluation of the expression that will fill the
location being touched. In lazy evaluation this expression is always known and a thunk for it can
be stored in this location. In that case, the above instructions can be easily generalized to enqueue
the thunk into the work queue.

L.oad and Store Instructions

The load instruction loads the contents of a given location into the accumulator. The location must
already be full. The take instruction is similar to load except that it leaves the location empty.

load:
(- load(f) :1s ps ws o[t~ (full V)]
(v s ps ws 0)

take:
(- take(f) :us ps ws o[t~ (full v)])
(v s ps ws o[l (defer []))])

loadi_k is an indexed, indirect load instruction. It desugars into touching an indexed location
and then loading its value into the accumulator.

loadi_k:

(- loadik(€;):es ps ws o[tz = (full H)])
(- touch(¢+k):load(£+k) :ts ps ws o)

The store instruction stores the contents of the accumulator into the given location. It also
reactivates any suspensions waiting in the location by enqueuing them in the work queue.

store:
(v store(f) :is ps ws ol (defer 6s)])
(v 15 ps ws+tés ol (full 1))

Storing in a location that is already full is regarded as an error. The storerr instruction tests
the status of a location and produces an error if it is already full. This instruction can precede a
store instruction to avoid multiple stores to the same location.

41

storerr:

(- storerr() :es ps ws ol — (full v)])
(storerr s ps ws o)

(- storerr(f) :1s ps ws o[l (defer §s)])
(- ts ps ws o)

Arithmetic and Logic Instructions

The standard arithmetic and logic primitives are straightforward. All of them leave the result in
the accumulator.
+:
(- +(l1,8):ts ps ws ol (full m), & — (full n)])
(m+n s ps ws o)

Switch Instruction

The switch instruction selects one of its branches based on the value present in the location being
dispatched upon.
switch (1 < m < n):
(. switch(€y,t51,...,t8,) 108 ps ws ofly — (full m)])
(- tSm+ts ps ws o)

Environment Manipulation Instructions

The pushenv instructions pushes the given environment frame onto the local environment stack
of a processor, while the popenv instruction pops one frame from the top. The contents of the
accumulator are not disturbed while popping.
pushenv:
(- pushenv(p):ts ps ws o)
(- 8 p:ips ws o)

popenv:
(v popenv:is p:ps ws o)
(v s ps ws o)

Thread Scheduling Instruction

The execution of a schedule instruction on a processor signifies either the termination or the sus-
pension of a thread. The processor schedules a new thread from the head of the work queue or
starts idling if the work queue is empty. The machine halts when all processors are idling.
schedule:

(- [schedule] ps (:8,p¢) :ws o)

(- ¢ ps ws o)

(- [schedule] ps [] o)
- {1 ps 1] o)

42

2.4 Expression Evaluation

In this section we describe the eval instruction which is used to destructure and evaluate expressions.
It leaves the value of the expression in the accumulator.
Evaluation of a constant simply loads that constant into the accumulator.
eval constant:
(- eval{c):is ps ws o)
(c ts ps ws o)

Evaluation of an identifier first touches it and then loads its value in the accumulator.
eval identifier:
(- eval(z):ts ps ws o)
(- touch(ps(z)) : load(ps(z)) :ts ps ws o)

In case of a strict primitive function, we touch all its arguments before executing the primitive
application.
eval strict PF: .
(- eval(PF™(zy,...,Z,)) :ts ps ws o)
(- touch{ps(z1)) : ...:touch(ps(zy,)) : PF*(ps(zy),...,ps(zn)) :ts ps ws o)

All data selector functions such as hd, tl, and select_k are directly implemented using the indexed,
indirect load instruction loadi_k.

The non-strict constructor Cons allocates a pair of empty locations in the store and immediately
returns the pointer to the first location as its value. It also pushes work into the work queue to
evaluate the arguments of Cons and to fill these locations eagerly. The n-ary tuple constructor
make_n_tuple operates in the same fashion. Note that under lazy evaluation we would have stored
thunks into these locations which would be evaluated on demand.
eval Cons:

(- eval(Cons(zy,z2)):ts ps ws o)
(£ s ps ws+{wr,wq] o)

where ¢ = o + { £~ (defer []), (£+ 1) — (defer []) }
wy = ([eval(z,), store(£), schedule], ps)
wo = ([eval(zy), store(£ + 1), schedule], ps)

A-expressions are evaluated to a closure value. The closure records the locations for the free
identifiers of the A-body in a new environment frame.

eval A-expression:
(- eval(Az.E):1s ps ws o)
((Az. E,p) s ps ws o)

where y1,...,Yym = FV(Az.E)
p={yr—ps(y1),--1ym = ps(ym) }

Evaluation of a function application proceeds by first touching the function and then applying

the resulting closure to the argument. The function argument is touched prior to application only
if the function application is strict (sap).

43

eval ap:

(- eval(ap(f,z)):is ps ws o)
(touch (33() - ap(ps(), p3()) es s @5 3]

eval sap:

(- eval(sap(f,z)):is ps ws o)
(- touch(ps(f)) : touch(ps(z)) : ap(ps(f), ps(z)) :ts ps ws o)

Given a closure, the ap instruction extends the closure environment frame with the given argu-
ment location and starts the evaluation of the function body after pushing the new environment
frame onto the current environment. The old environment is restored after the evaluation of the
body produces a result in the accumulator?.

ap:

(- ap(ly,L;):us ps ws olly— (full Az. E, p))])
(- pushenv(p’) : eval(E) : popenv : is ps ws o)
where p' = p+{z— ¢, }

The evaluation of the case expression proceeds by first touching the dispatch expression. This
must yield an integer within the range of the dispatch which is used to select the appropriate
branch.
eval case:

(- eval(case(z, Ey,...,E,;)):ts ps ws o)
(- touch(ps(z)) : switch(ps(z), [eval(E}1)],...,[eval(E,)]) :¢ts ps ws o)

The evaluation of a block expression allocates a new activation frame in the store with a fresh
location for each bound identifier of the block. It also allocates new environment frame which
points to the locations in the new activation frame. This environment frame is pushed onto the
current environment. Following eager evaluation, auxiliary threads are added to the work queue to
evaluate each of the right-hand side expressions in the extended environment. The result identifier
is also evaluated under this extended environment.
eval block:

(- eval{zy=Ey;...;z2p=En,inz}):ts ps ws o)
(- pushenv(p) : eval(z) : popenv : 1s ps wsHws' o)

where p={z1—4;,...,2n =4y }
o' =0+ { £ — (defer []),..., 0, — (defer []) }
ws’ = [([eval(E}), store(¢;), schedule], p : ps),

([eval(E,), store(£,), schedule], p : ps)]

It is also possible to initialize the newly allocated block locations with the thunks for their
respective right-hand side expressions, and not enqueue threads into the work queue. These thunks
will be enqueued when the locations are touched.

3 Side-Effect Operations

Functional programming languages purposely do not permit assignment or mutable storage. In-
stead, such features are often offered through various implementation tricks such as by using

?Note that restoring the environment does not imply that the function environment can be deallocated because
some threads of the function body may not have terminated yet.

44

Constant == .--|e

PF! := ---|iAlloc|mAlloc | iFetch | mFetch |W
PF? = ..-|iStore|mStore| &
S u= -] (S === S9)

Figure 4: Kernel language extensions for side-effect operations.

monadic programming techniques. Alternatively, side-effects may be introduced via the traditional
assignment operator after specifying a precise sequential ordering on all operations (e.g., Scheme
and ML). Id, motivated by concerns for parallelism, offers yet another alternative for incorporating
side-effects. In Id, it is possible to specify only a partial order on side-effect operations and still
retain an overall consistent picture of the computation.

pH supports imperative operations on I-structure [4] and M-structure [6] objects. I-structures
allow the creation of a data structure to be separated from the definition of its components: at-
tempts to use the value of a component are automatically delayed until that component is defined;
attempts to redefine a component lead to an error state. M-structures, on the other hand, are fully
mutable data structures whose components can be redefined repeatedly: an mFetch operation reads
and empties a full component; an mStore operation (re)defines it; two successive mStore operations
on the same component lead to an error state unless separated by an mFetch operation.

For some programs in pH we need a way to sequentialize M-structure operations in order to
avoid race conditions implied by its parallel evaluation order. This is accomplished by the use of
control regions and barriers [2]. A control region is informally defined as a set of concurrent threads
that are under the same control dependence and therefore always execute together. Threads within
the same control region may execute in any order or in an interleaved manner as long as the data
dependencies among them are respected. Barriers provide a mechanism to detect the termination of
a set of parallel activities enclosed within a control region. A barrier (---) creates two sub-regions
within a given control region — one above the barrier called the pre-region and the other below
the barrier called the post-region. Intuitively, no computation within the post-region is allowed to
proceed until all the side-effect computations within the pre-region have terminated. This semantics
is different from those proposed in {2] where a barrier waits for the termination of all computations
rather than just those which cause side-effects.

In the rest of this section we describe the pH extensions to deal with I-structure and M-structure
operations. The semantics of barriers is described in Section 4.

3.1 Kernel Language Extensions

We extend the kernel language to incorporate side-effect operations and barriers as shown in Fig-
ure 4. We add primitives to allocate, read, and write I-structures and M-structures. The fetch and

store operations directly address store locations: indexed addressing is handled separately in the
kernel language.

We also extend the syntax for block bindings to allow barriers—two sets of parallel block
bindings may now be sequentialized by using a barrier (---) between them. Additional constants
(e), primitive operators (W and &) and strict function application (sap) are used to translate barriers
into an ordinary set of bindings.

45

3.2 Evaluation Rules for Side-Effect Operations

In this section we describe additional evaluation rules for internal primitive operators involving
I-structures, M-structures, and barriers. All these operators are strict on all their inputs.

I-structure Instructions:

The iAlloc instruction allocates an empty I-structure array. The iFetch and iStore instructions
address an I-structure location directly; all address arithmetic must be done separately. The iFetch
instruction is similar to loadi_k. The iStore instruction updates an empty location with a value and
reactivates any suspended continuations. Storing to an already full location is considered to be an
error.

iAlloc:

(- iAlloc(€;) :es ps ws ofly — (full n)])
(€ s ps ws o)
where 0/ =0 + { £+ (defer []),...,(€+n — 1) — (defer []) }

iFetch:

(- iFetch(£;) :ts ps ws o€y — (full £)])
(- touch(f):load(f):ts ps ws o)

iStore:
(- iStore(€;,L;) s ps ws o[y — (full £)])
(- atomic([storerr(£),load(Z;),store(¢)]) :ts ps ws o)

Mb-structure Instructions

The mAlloc and mStore instructions are identical to the corresponding instructions for I-structures.
The mFetch instruction is similar to the iFetch except that it empties the location being accessed
and has to be retried if the location is already empty.

mAlloc:
(- mAlloc(£;) :ts ps ws olly — (full n)])
£ s ps ws o)
where ¢/ = o + { £ (defer []),...,(£+n — 1)~ (defer []) }

mFetch:

(- mFetch({;) 115 ps ws ol — (full £)])
(- atomic([rtouch(€),take(¢)]) :ts ps ws o)

mStore:
(- mStore(£;,£,) :ts ps ws ofly — (full &)
(- atomic([storerr(€),load(£;),store(€)]) : ts ps ws o)

4 Semantics of M-Barriers

In this section we describe the semantics of barriers by translating them into ordinary block bind-
ings. The idea is to systematically construct a composite termination signal from all the side-effect

46

EXPRESSIONS

TE = Expression — Expression
TE[] = ¢ o
TE[z] =z, o
TE[mFetch(z)] = {y =mFetch(z);

iny, W(y)}
TE[mStore(z, 2)] = {y =mStore(z, z);

iny, W(y)}
TE[PF™(z1,...,2,)] = PF™(z1,...,2n), ®
TE[) z. E] = Az.TE[E], e

TE[case (z, Ey,...,E,)] = case(z, TE[E],..., TE[E.])

TE{ap(f,)] = ap(f,z)
TE[{Sinz }] = {Sinz, s}
where S',s = TS[S]
STATEMENTS
TS[] i Statement — List(Statement) X Identifier
TS'[G]] = (3 = .), S
TS{z = F] = (z,s=TE[E]), s
TS[S1;---;Sx] = (Sf;...;SL;5=851& - &sp), s
where S/, s;=TS[S;] 1<i<n -
TS[S; --- 2] = (Si

f= ’\3{ Sé in Yi,-++1Ym, 52 };
yh"'aymrslz = Sap(f731))1 312
where Sl s; = TS[S] 1<i<2
Yy.-9Ym = BV(Sg)

Figure 5: Semantics of M-barriers.

operations taking place within the pre-region of a barrier (including its child regions) which would
then be used to trigger the operations present in the post-region of the barrier. The notion of signal

generation and composition may be understood by looking at the translation of a simple parallel
block as shown below.

TE[[{ Ty = El; = { Ty, 81 = TE[El]I;
Tn = Egn; TnySn = TE{En]I;
inz }] inz,s1 & --- &5, }

An expression E; is translated as TE[E;] which dynamically returns a value (bound to z;)
along with an explicit termination signal s;. The operator W is used to detect the termination of
each side-effect operation (mFetch and mStore) within E;. The value of s; would become e as soon
as all the side-effect operations in E; have terminated. The operator & is then used to combine all
such signals into a single signal for the whole block.

The primitive W operator produces a signal e when a given identifier becomes a value. The
general evaluation rule for strict primitive functions would ensure that the identifier being tested

47

is touched before applying the W operator. Similarly, the primitive & operator is used to combine
signals from two subexpressions into one signal after they have been touched.

wW:
(- W(t):es ps ws ol — (full v)])
(¢ s ps ws o)

(- &(£1,€3):ts ps ws o[ly = (full e, Ly (full 8)])
(¢ ts ps ws o)

The complete barrier translation appears in Figure 5. Note that tuple return values and non-
refutable pattern matching is used only for clarity—these operations are directly desugared into
primitive operators in the obvious way. The only non-trivial base cases for signal generation are
those for the mFetch and mStore primitive operators. The mFetch operation is considered to have
terminated when the value of the location being fetched is returned. Similarly, the mStore operation
is considered to have terminated when it returns the value being stored.

In the translation of S; === S3, note that S, gets protected by a A-expression, so that it does
not get evaluated until the A-expression is applied to something. That something is the termination
signal of Sy, and we use sap to ensure that the application does not commence until the termination
signal is available. Finally, since the bound variables of S; have now gone into an inner scope (in
the A-expression), we return them all and rebind them again in the outer scope.

The barrier semantics shown here are different from the semantics presented in {2] in that here
we are concerned only with the termination of the side-effect operations present within the pre-
region of a barrier, while the semantics presented in [2] waited for the termination of the entire
computation within the pre-region.

5 Conclusion

In this paper we have presented the various semantic issues in the design of pH at which it differs
from or extends the Haskell programming language. The major difference is that pH uses a. parallel
eager evaluation strategy as opposed to the lazy evaluation strategy of Haskell. First, we described
the kernel pH language and a normalizing interpreter for it that implements this parallel evaluation
order. Next, we extended the language and the interpreter with synchronizing side-effect operations,
I-structures and M-structures. Finally, we described a notion of sequentialization of side-effects
using barriers. We showed a systematic translation of a kernel pH program with barriers into one
without barriers using primitive termination detection operators.

The readers may note that our interpreter used an explicit instruction stream rather than di-
rectly evaluating kernel language expressions. This organization allows us to define a multithreaded
compilation scheme for the kernel language within the same framework. The process of com pilation
can be defined as simply generating all the threads statically instead of manipulating the instruc-
tion stream dynamically. It essentially gets rid of the eval instruction. Such a compilation scheme
for the kernel language is described in [1].

Currently, there is a working implementation of the pH language using the Haskell/pH HBCC
front-end (written in Haskell) from Chalmers University and the Id compiler Monsoon back-end
(written in Lisp) from MIT. The HBCC front-end produces a kernel pH intermediate format that
is converted into dataflow graphs and fed into the Monsoon back-end. Currently, we have exercised

48

this compiler with purely functional Haskell programs or pH programs derived by automatically
transliterating Id programs. At MIT, we are currently working on a new pH back-end for commercial

uniprocessor and multiprocessor architectures that is closer in spirit to the interpretation scheme
described in this paper.

References

[1] Shail Aditya. Normalizing Strategies for Multithreaded Interpretation and Compilation of
Non-Strict Languages. CSG Memo 374, MIT Laboratory for Computer Science, Cambridge,
MA 02139, May 1995.

[2] Shail Aditya, Arvind, and Joseph E. Stoy. Semantics of Barriers in a Non-Strict, Implicitly-
Parallel Language. In Proc. Functional Programming Languages and Computer Architecture,
La Jolla, CA, Cambridge, MA 02139, June 1995. Also available as CSG Memo 367-1, MIT
Lab. for Computer Sc., Cambridge, MA 02139.

[3] Zena M. Ariola and Arvind. Properties of a First-order Functional Language with Sharing.
CSG Memo 347-1, Laboratory for Computer Science, MIT, Cambridge, MA 02139, June 199%4.
To appear in Theoretical Computer Science, September 1995.

[4] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. [-Structures: Data Structures for Parallel
Computing. ACM Transactions on Programming Languages and Systems, 11(4):598-632, 1989.

[5] Lennart Augustsson and Thomas Johnsson. Parallel Graph Reduction with the < v,G >-
machine. In Proc. Fourth Intl. Conf. on Functional Programming Languages and Computer
Architecture, London, pages 202-213. ACM Press, September 1989.

(6] Paul S. Barth, Rishiyur S. Nikhil, and Arvind. M-Structures: Extending a Parallel, Non-Strict,
Functional Language with State. In Proc. Functional Programming Languages and Computer
Architecture, pages 538-568. Springer-Verlag, 1991. LNCS 523.

[7]1 A. P. W. B6hm, D. C. Cann, J. T. Feo, and R. R. Oldehoeft. SISAL 2.0 Reference Manual.
Technical Report UCRL-MA-109098, Lawrence Livermore National Laboratory, December
1991.

(8] Paul Hudak, Simon Peyton Jones, and Philip Wadler (editors). Report on the Programming
Language Haskell: A Non-strict Purely Functional Language, Version 1.2. ACM SIGPLAN
Notices, 27(5), May 1992.

[9] Thomas Johnsson. Efficient Compilation of Lazy Evaluation. Proc. ACM SIGPLAN ’84
Symposium on Compiler Construction, SIGPLAN Notices, 19(6):58-69, June 1984.

[10] Rishiyur S. Nikhil. Id Language Reference Manual Version 90.1. Technical Report CSG Memo
284-2, Laboratory for Computer Science, MIT, Cambridge, MA 02139, July 15 1991.

[11] Rishiyur S. Nikhil, Arvind, James Hicks, Shail Aditya, Lennart Augustsson, Jan-Willem
Maessen, and Yuli Zhou. pH Language Reference Manual, Version 1.0—preliminary. CSG
Memo 369, Laboratory for Computer Science, MIT, Cambridge, MA 02139, January 1995.

[12] Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware: the
Spineless Tagless G-machine. Journal of Functional Programming, 2(2):127-202, April 1992.

49

Monadic I/O in Haskell 1.3

Andrew D. Gordon * and Kevin Hammond

June 1995

Abstract

We describe the design and use of monadic
I/O in Haskell 1.3, the latest revision of the
lazy functional programming language Haskell.
Haskell 1.3 standardises the monadic I/O mech-
anisms now available in many Haskell systems.
The new facilities allow fairly sophisticated
text-based application programs to be written
portably in Haskell. The standard provides im-
plementors with a flexible framework for ex-
tending Haskell to incorporate new language
features. Apart from the use of monads, the
main advances over the previous standard are:
character I/O based on handles {analogous to
ANSI C file pointers), an error handling mecha-
nism, terminal interrupt handling and a POSIX
interface. Apart from a tutorial description of
the new facilities we include a worked example:
a derived monad for combinator parsing.

1 Introduction

Haskell 1.3 improves on previous versions of
Haskell {12] by adopting an I/O mechanism
based on monads [19]. This paper explains the
structure of this monadic I/O mechanism, jus-
tifies some of the design decisions, and explains
how to program with the new facilities. This pa-
per provides a more in-depth treatment of I/O
than is possible in the Haskell 1.3 report [9] and
library documentation [10].

Previous versions of Haskell used synchro-
nised streams or dialogues for I/0. In practice,
many Haskell programmers found it cumber-
some to use these constructs directly. Awkward
pattern matching against the input stream was
necessary, as illustrated by the program in Ta-

* University of Cambridge Computer Laboratory, New
Museums Site, Cambridge, CB2 3QG, UK.

tDepartment of Computing Science, University of
Glasgow, 17 Lilybank Gdns., Glasgow, G12 8QQ, UK.

main “(Str input : ~ (Success
[ReadChan stdin,
AppendChan stdout input
]

2)) =

Table 1: Dialogue I/O in Haskell 1.2

ble 1, which simply copies its standard input
to its standard output. Instead, it is common
practice to use libraries of derived combinators
to program at a higher level. One such library
(for continuation-passing I/O [14, 17]) used to
be part of Haskell’s standard prelude.

Recently, researchers have experimented with
new I/O combinators based on monads [8, 18].
These combinators are capable of capturing all
the I/O operations that could be provided us-
ing the previous stream-based approach, and
provide the same type security as the contin-
uation library. The monadic approach is sig-
nificantly more flexible than the other two ap-
proaches, however, in the ease with which new
I/O primitives can be introduced or existing
I/O primitives combined to create new com-
binators. Monadic I/O has proved sufficiently
attractive that several Haskell systems already
support at least a basic implementation, and
some support sophisticated mechanisms such as
inter-language working, concurrency, or direct
state-manipulation.

One of the main purposes of Haskell 1.3 is to
standardise primitives for monadic I/O. The de-
sign provides a basic (but “industrial-strength”
and extensible) interface to common operating
systems such as Unix, DOS, VMS, or the Macin-
tosh. The design has been influenced by the I/0O
operations found in imperative languages. Ex-
perimental features such as graphical interfaces
or mutable variables with which the Haskell
community has little experience are beyond the

scope of the standard. To aid backwards com-
patibility, the design provides a monadic inter-
face to the majority of operations which existed
in previous versions of Haskell. Some rarely-
used features, such as Binary files, have been
removed, pending better designs.

The definition of Haskell 1.3 consists of two
documents. The report proper [9] defines the
Haskell language and the standard prelude. The
standard libraries have a separate definition [10].
Sections 2, 3 and 4 of this paper describe the
contents of the I/O libraries. Section 5 shows
how to write combinator parsers on top of
Haskell 1.3 I/O. Section 6 outlines previous work
on functional I/O and Section 7 summarises.
Appendix A summarises the types of all the [/O
and operating system operations provided by
Haskell 1.3 and Appendix B contains code for
combinator parsing.

2 Elements of Monadic I/0

Monadic I/O depends on the builtin type con-
structor, I0. An expression of some type I0 ade-
notes a computation, that may perform I/0 and
then returns a result of type a. The main pro-
gram (function main from module Main, which
we write Main.main) has type I0 (), that is, it
is a computation which performs some I/O and
returns an uninteresting result. The “trivial”
type () has only one value, the unit value, which
is also written (). When a Haskell program
runs, there is a single top-level thread of con-
trol that executes the computation denoted by
Main.main. Only this thread of control can ex-
ecute the computations denoted by expressions
of monadic type.

The monad constructor I0 is a liberation
to the purist functional programmer in that
it permits expression of arbitrary imperative
commands within a higher-order type-secure
language. Unlike languages like Lisp or ML,
in which arbitrary expressions may have side-
effects, only expressions of monadic type may
do so in Haskell. The rest of the language is
undisturbed.

Section 2.1 introduces monadic I/O using the
handful of I/O operations present in the stan-
dard prelude. The majority of operations are in
libraries that need to be explicitly imported by
the programmer. LibI0, the main library, con-
tains basic monadic functions and file handling

operations. We consider simple file processing
operations from LibIQ in Section 2.2 and ex-
plain control flow and error signalling operations
on the I0 monad in Section 2.3.

2.1 Simple programs

The simplest possible programs simply output
their result to the standard output device (this
will normally be the user’s terminal). This is
done in Haskell using the print function.

print :: Text a => a =-> 10)

If z:: aand type ais in the Text class, then
print zis the computation that prints show z,
a textual representation of z, on the standard
output. The Text class contains types such as
Int, Bool and Char, lists and tuples formed
from them, and certain user-declared algebraic
types. The libraries document [9] defines the
show function and the Text class. Here, for ex-
ample, is a program to output the first nine nat-
ural numbers and their powers of two.

0 Q
print [(n, 2°n) | n <~ [0..8]]

main ::
main =

The output of the program is:

{(,n, 1,2), 2,9, 3,8, 4,16,
(5,32), (6,64), (7,128), (8,256)]

The show function, and hence also print, for-
mats its output in a standard way, as in source
Haskell programs, so strings and characters are
quoted (for example, “Haskell B. Curry"),
special characters are output symbolically (that
is, ’\n’ rather than a newline), lists are en-
closed in square brackets, and so on. There
are other, more primitive functions which can
be used to output literal characters or strings
without quoting when this is needed (putChar,
putStr). These are described in the following
sections.

Interacting with the User

Haskell 1.3 continues to support Landin-stream
style interaction with standard input and out-
put, using interact. (The type String below
is a synonym for [Char].)

interact :: (String -> String) -> I0Q)

If fis a stream processing function, computation
interact f proceeds by evaluating f applied to
a lazy stream representing the characters avail-
able from the standard input, and printing the
characters produced to standard output. For
example, the following program simply removes
all non-upper-case characters from its standard
input and echoes the result on its standard out-
put.

main = interact (filter isUpper)

The functions filter and isUpper come from
the Haskell prelude. They have the following
types.

filter
isUpper

:: {a => Bool) -> [a] -> [a]
:: Char -> Bool

When run on the following input,

Now is the time for all Good Men to come
to the aid of the Party.

this program would output the following.
NGMP

Since interact only blocks on input when de-
mand arises for the lazy input stream, it sup-
ports simple interactive programs; see Frost and
Launchbury [6], for instance.

Basic File I/0

writeFile :: String -> String -> I0()
appendFile :: String ~> Strimg -> I0()
readFile :: String -> I0 String

The writeFile and appendFile functions write
or append their second argument, a string, to
the file named by their first argument. To write
a value of any printable type, as with print,
use the show function to convert the value to a
string first. For example,

main =
appendFile "ascii-chars"
{show [(x,chr (x)) | x <~ {0..127]11)

writes the following to the file ascii-chars:

£(0,’\NUL’), (1,’\SOH’), (2,’\STX’), ...
. (126,°77), (127,’\DEL’)]

52

The readFile function reads the file named by
its argument and returns the contents of the file
as a string. The file is read lazily, on demand,
as with interact.

To illustrate readFile, we need to compose
computations in sequence. We use the infix
function (>>=) of type I0 a -> (a -> I0 b)
-> I0 b. Computation compl >>=\z -> comp2
begins by running compl. When it returns a
result z, computation comp2 is run, which may
depend on z. For example, the following pro-
gram reads the file infile, turns all upper-case
characters into lower-case ones, and then writes
the result to the file outfile.

main =
readFile "infile" >>= \ input ->
let output = map tolower input

in
vriteFile "outfile" output

The notation \ p -> e is a Haskell lambda-
expression, denoting a function whose argument
is the pattern p and whose body is the expres-
sion e.

This level of programming (treating files as
Strings) was roughly all that could be done
with Haskell 1.2, and in fact programs at this
simple level can be used almost without change
in Haskell 1.3. To write more sophisticated pro-
grams than these in Haskeil 1.3, the I/O library,
LibI0, needs to be explicitly imported.

2.2 Character-Based I/0

To process files character-by-character,
Haskell 1.3 introduces handles, which are
analogous to ANSI C’s file descriptors. Stream-
based operations, working on complete files or
devices, such as writeFile or interact, are
in fact derived from character-based primitives.
The two simplest functions are getChar and
putChar.

I0 Char

getChar :
: Char -> 10 O

putChar

The getChar computation reads a character
¢ from the standard input device and returns
c as its result. The putChar ¢ computation
writes character ¢ to the standard output de-
vice, and returns the unit value, () as its re-
sult. For example, here is a program that copies
its standard input character-by-character to its

standard output (equivalently to, but somewhat
more verbosely than interact id!)

import LibIO

main =

isEQF

if iseof then
return ()

else
getChar
putChar ¢
main

>>= \ iseof ->

=\ ¢ >
>>

This program uses several new functions. The
return function simply returns its argument as
the result of the monadic computation. The
function (>>) is identical to (>>=) except that
its continuation takes no argument: the result, if
any, of the first computation is simply discarded.
The function isEOF returns returns True when
the end-of-file is reached, and False otherwise.

2.3 Results and Errors

I/0 operations need to indicate errors without
terminating the program, and implementations
need to handle these errors. Hence, as well as
terminating successfully with a resuit (for exam-
ple using return), I/O computations may ter-
minate in failure, returning an error value of the
builtin type I0Error. For instance, input oper-
ations fail with the error value eofIQError to
indicate end of file. Users may create new error
values. The function userError sends a string
to an error value distinct from those generated
by the I/O primitives. Programmers can gen-
erate failures directly via the fail function, of
type I0Error -> I0 (). The parsing combina-
tors of Section 5 illustrate fail.

So that error values may propagate as in-
tended, the (>>=) function needs to take ac-
count of the possibility of failure. If the first
computation fails with some error value e, then
the entire computation also fails with e.

Here is a simple parity checker to compute the
parity of an input consisting of just Ts and Fs.

module Parity where
import LibIQ

I0Error
userError "Parity"

perr ::
perr =

53

parity :: Bool -> I0 Bool
parity b =
isEQF >>= \eof

if eof then return b

else getChar
if c==’T’ then
(if b then parity True
else parity False)

>>= \¢c ->

else if c==’F’ || isSpace ¢ then
parity b

else fail perr

The computation parity True returns True if
the number of Ts is even, and False if the num-
ber is odd. But if any character other than T, F
or white-space is in the input, the computation
fails with the user-defined error value perr.

Catching Errors

Failures can be handled by the programmer us-
ing the catch function, of type

I0 a -> (I0Error -> IO a) -> I0 a.

Computation catch comp f performs computa-
tion comp. H comp returns a result z, this is the
result of the entire computation. Otherwise, if
comp returns an error value z, the computation
continues with f z.

import LibI0; import LibSystem
import Parity

main =
(parity True >>= print) ‘catch‘ handler
handler err =
if err == perr then
print "Unexpected input character™ >>
exitWith (ExitFailure 1)
else
fail err

Haskell 1.3 assumes that the operating sys-
tem understands numeric return codes. Func-
tion exitWith sends ExitFailure ezitfail to
a computation that immediately terminates
the Haskell program and sends the operating
system the numeric code ezitfail Likewise,
exitWith ExitSuccess immediately terminates
Haskell and sends the code for success, the num-
ber being dependent on the operating system.

The code also shows that error values can be
passed to an outer level of the program by a call
to fail within a handler.

There is also a derived operation try which
can be used to expose error values in computa-
tions that fail, turning the failures into success-
ful computations. The type of try is I0 a ->
I0 (Either IOError a), where Either is a
standard type defined by the following.

data Either a b = Left a | Right b

The computation try comp runs the computa-
tion comp, and if it returns the result z, returns
result Right z. Otherwise if comp returns an
error value z it returns the result Left z. Hence
try comp never fails with an error value. Of
course it may loop if comp loops.

Haskell also defines a similar Maybe type, that
we will use to indicate optional results from
functions and computations.

data Maybe a = Nothing | Just a

For example,

isUserError :: IQError -> Maybe String

determines whether an I0Erroris a user-defined
error. If so it returns Just err, where err is
a programmer-specific string. Otherwise it re-
turns Nothing.

The Error Function

Haskell 1.3 continues to support the exrror func-
tion. An expression error msg can be of arbi-
trary type and is treated semantically as identi-
cal to a divergent expression. If such an expres-
sion is ever evaluated, implementations should
halt and print the error string msg. The error
function is still useful in Haskell 1.3 for indicat-
ing program bugs, for instance. The monadic
error signalling mechanism ig preferable for han-
dling errors in input. There is no way to catch
an error indicated by the error function.

3 The LibIO Library

Having explained the basic operations on the
I0 monad, the objective of this section is to
cover the I/O operations provided by the LibI0
library. We begin in Section 3.1 by defining
Haskell files and handles. Section 3.2 explains

54

how files are opened and closed. Section 3.3 ex-
plains how to control the buffering of handle I/O
and Section 3.4 explains how handles may be re-
positioned in a file. Operations in Sections 3.5,
3.6 and 3.7 cover querying handle properties,
input and output respectively. The types of all
these functions are in Appendix A.

3.1 Files and Handles

Haskell interfaces to the external world through
an abstract file system. This file system is a col-
lection of named file system objects, which may
be organised in directories (see Section 4.1). We
call any file system object that isn’t a directory a
file, even though it could actually be a terminal,
a disk, a communication channel, or indeed any
other object recognised by the operating system.
File and directory names are strings. Files can
be opened, yielding a handle which can then be
used to operate on the contents of that file. Di-
rectories can be searched to determine whether
they contain a file system object. Files (and
normally also directories) can be added to or
deleted from directories.

Handles are used by the Haskell run-time sys-
tem to manage I/O on files. They are analogous
to POSIX file descriptors. A handle is a value of
type Handle. A handle has at least the following
properties:

¢ whether the handle manages input or out-
put or both;

o whether the handle is open, closed or semi-
closed (see Section 3.2);

e whether the file is seelable (see Section 3.4);

¢ whether buffering on the handle is disabled,
or enabled on a line or block basis (see Sec-
tion 3.3);

¢ a buffer (whose length may be zero).

Most handles will also have a current I/O posi-
tion indicating where the next input or output
operation will occur.

Standard Handles

There are three standard handles which manage
the standard input (stdin), standard output,
(stdout), and standard error devices (stderx),

respectively. The first two are normally con-
nected to the user’s keyboard and screen, re-
spectively. The third, stderr, is often also con-
nected to the user’s screen. A separate handle is
provided because it is frequently useful to sep-
arate error output from the normal user out-
put which appears on stdout. In operating sys-
tems which support this separation, one or the
other is often directed into a file. If an operat-
ing system doesn’t distinguish between normal
user output and error output, a sensible default
is for the two names to refer to the same han-
dle. It is common for the standard error handle
to be unbuffered, so that error output appears
immediately on the user’s terminal, but this is
not always the case—see Section 3.3.

3.2 Opening and Closing Files

The openFile function is used to obtain a new
handle for a file. It takes a mode parameter of
type I0Mode, that controls whether the handle
can be used for input-only (ReadMode), output-
only (WriteMode or AppendMode), or both input
and output (ReadWriteMode). There are I/O
operations on handles similar to those provided
for standard input and output. Handle oper-
ations are distinguished by the prefix h, as in
hGetChar. When a file is opened for output,
it’s created if it doesn’t already exist. If, how-
ever, the file does exist and it is opened using
WriteMode, it is first truncated to zero length
before any characters are written to it.

For instance, the copy program given earlier
can be rewritten to work on files as follows.

import LibIO
import LibSystem

main =
getArgs >>= \ args ->
let (inf:outf:) = args in

openFile inf ReadMode >>= \ ih ->
openFile outf WriteMode >>= \ oh
copyFile ih ch >>
hClose ih >>
hClose oh

copyFile :: Handle -> Handle -> I0 ()
copyFile ih oh =
hIsEof ih
if eof then
return ()

>= \ eof ->

55

else
hGetChar ih >=\ ¢ =>
hPutChar oh ¢ >>

copyFile ih oh

The getArgs computation {whose type is I0
[String]) returns a list of strings which are the
arguments to the program. The hClose func-
tion closes a previously opened handle. Once
closed, no further I/O can be performed on a
handle. In this particular program, the two uses

_of hClose are superfluous, since all open handles

are automatically closed when the program ter-
minates. It is generally good practice to close
open handles once they are finished with. Many
operating systems allow a program only 2 lim-
ited number of live references to file system ob-
jects.

ReadWrite Mode

ReadWriteMode allows programmers to make
small incremental changes to text files. This can
be much more efficient than reading a complete
file as a stream and writing this back to a new
file.

Lazy Input Streams

The hGetContents function is used to emulate
stream I/O by reading the contents of a handle
lazily on demand. For example, the interact
function can be defined by:

interact £ =
hGetContents stdin
hPutStr stdout (f s)

>»=\ s =>

A handle becomes semi-closed as soon as
it is read lazily using a getContents or
hGetContents operation. In this situation, the
handle is effectively closed for all purposes ex-
cept lazy reading of the contents of its file, or
closing the handle explicitly. If an error occurs
on a semi-closed handle it is simply discarded.
This is because it is not possible to inject error
values into the stream of results: hGetContents
returns a lazy list of characters, and only com-
putations of type 10 g can faill

Normally semi-closed handles will be closed
automatically when the contents of the associ-
ated stream have been read completely. Occa-
sionally, however, the programmer may want to
force a semi-closed handle to be closed before
this happens, by using hClose (for instance if

an error occurs when reading a handle, or if the
entire contents is not needed but the file must
be overwritten with a new value). In such a case
the contents of the lazy input list are implemen-
tation dependent.

File Locking

A frequent problem with Haskell 1.2 was that
implementations were not required to lock files
when they were opened. Consequently, if a pro-
gram opened a file again for writing while it was
still being read, the results returned from the
read could be garbled. Because of lazy evalua-
tion and implicit buffering (also not specified by
Haskell 1.2), it was possible for this to happen
on some but not all program executions. This
problem only occurs with languages which im-
plement lazy stream input (3 la hGetContents)
and also have non-strict semantics.

In general it is hard for programmers to
avoid opening a file when it has already been
opened in an incompatible way. Almost all non-
trivial programs open user-supplied filenames,
and there is often no way of telling from the
names whether two filenames refer to the same
file. The only safe thing to do is implement file
locks whenever a file is opened. This could be
done by the programmer if a suitable locking
operation was provided, but to be secure this
would need to be done on every openFile oper-
ation, and might also require knowledge of the
operating system.

The definition requires that identical files are
locked against accidental overwriting within a
single Haskell program (single-writer, multiple-
reader). Two physical files are certainly identi-
cal if they have the same filename, but may be
identical in other circumstances. A good imple-
mentation will use operating-system level lock-
ing (mandatory or advisory), if they are appro-
priate, to protect the user’s data files. Even so,
the definitiorn only requires an implementation
to take precautions to avoid obvious and persis-
tent problems due to lazy file I/O (a language
feature): it does not require the implementation
to protect against interference by other applica-
tions or the operating system itself.

File Size

For a handle Adl which attached to a physical
file, computation hFileSize hdl returns the size

56

of that file as an integral number of bytes. On
some operating systems it is possible that this
will not be an accurate indication of the number
of characters that can be read from the file.

File Extents

On systems such as the Macintosh it is much
more efficient to define the maximum size of a
file (or extent) when it is created, and to in-
crease this extent by the total number of bytes
written if the file is appended to, rather than
increasing the file size each time a block of data
is written. This may allow a file to be laid out
contiguously on disk, for example, and therefore
accessed more efficiently. In any case, the actual
file size will be no greater than the extent.

While efficient file access is a desirable char-
acteristic, the designers felt that dealing with
this aspect of I/O led to a design which was
over-complex for the normal programmer. The
Haskell I/O definition therefore does not distin-
guish between file size (the number of bytes in
the file), and file extent (the amount of disk oc-
cupied by a file).

3.3 Buffering

Explicit control of buffering is important in
many applications, including ones that need to
deal with raw devices (such as disks), ones which
need instantaneous input from the user, or ones
which are involved in communication. Examples
might be interactive multimedia applications, or
programs such as telnet. In the absence of such
strict buffering semantics, it can also be difficult
to reason (even informally) about the contents
of a file following a series of interacting I/O op-
erations.

Three kinds of buffering are supported: line-
buffering, block-buffering or no-buffering. These
modes have the following effects. For output,
items are written out from the internal buffer
according to the buffer mode:

¢ line-buffering: the entire buffer is written
out whenever a newline is output, the buffer
overflows, a flush is issued, or the handle is
closed.

o block-buffering: the entire buffer is writ-
ten out whenever it overflows, a flush is is-
sued, or the handle is closed.

¢ no-buffering: output is written immedi-
ately, and never stored in the buffer.

The buffer is emptied as soon as it has been
written out.

Similarly, input occurs according to the buffer
mode for handle hdl

e line-buffering: when the buffer for hdl is
not empty, the next item is obtained from
the buffer; otherwise, when the buffer is
empty, characters up to and including the
next newline character are read into the
buffer. No characters are available until the
newline character is available.

¢ block-buffering: when the buffer for hdl
becomes empty, the next block of data is
read into the buffer.

¢ no-buffering: the next input item is read
and returned.

For most implementations, physical files will
normally be block-buffered and terminals will
normally be line-buffered.

The computation hSetBuffering hdl mode
sets the mode of buffering for handle hdl on sub-
sequent reads and writes as follows.

o If mode is LineBuffering, then line-
buffering is enabled if possible.

o If mode is BlockBuffering m, then block-
buffering is enabled if possible. The size of
the buffer is n items if m is Just n and is
otherwise implementation-dependent.

o [f mode is NoBuffering, then buffering is
disabled if possible.

If the mode is changed from BlockBuffering or
LineBuffering to NoBuffering, then

o if hdlis writable, the buffer is flushed as for
hFlush;

o if hdl is not writable, the contents of the
buffer is discarded.

The default buffering mode when a handle is
opened is implementation-dependent and may
depend on the object which is attached to that
handle. The three buffer modes mirror those
provided by ANSI C.

57

Flushing Buffers

Sometimes implicit buffering is inadequate, and
buffers must be flushed explicitly. The compu-
tation hFlush hdl causes any items buffered for
output in handle idl to be sent immediately to
the operating system. While it would, in princi-
ple, be sufficient to provide hFlush and avoid
the complexity of explicit buffer setting, this
would be tedious to use for any kind of buffer-
ing other than BlockBuffering. It would be
prone to error and require programmer cooper-
ation by providing optional flushing after each
I/O operation when writing library functions.

3.4 Re-positioning Handles

Many applications need direct access to files if
they are to be implemented efficiently. Exam-
ples are text editors, or simple database appli-
cations. These applications often work on read-
write handles described above. It is surprising
how complicated such a common and apparently
simple operation as changing the I/O position is
in practice. The design given here draws heavily
on the ANSI C standard.

Revisiting an 1/0O position

On some operating systems or devices, it is not
possible to seek to arbitrary locations, but only
to ones which have previously been visited. For
example, if newlines in text files are represented
by pairs of characters (as in DOS), then the /O
position will not be the same as the number of
characters which have been read from the file
up to that point and absolute seeking is not
sensible. Functions hGetPosn and hSetPosn to-
gether provide this functionality, using an ab-
stract type to represent the positioning infor-
mation (which may be an Integer or any other
suitable type). There is no way to convert a
handlePosn into an Integer offset. This is not
generally possible. A programmer can record
the current I/O position if using hSeek.

Seeking to a new I/O position

Operating systems such as Unix or the Macin-
tosh allow I/O at any position in a file. The
hSeek operation allows three kinds of position-
ing: absolute positioning AbsoluteSeek, po-
sitioning relative to the current I/O position
RelativeSeek, and positioning relative to the

current end-of-file SeekFromEnd. Some imple-
mentations or operating systems may only sup-
port some of these operations.

All positioning offsets are an integral num-
ber of bytes. This seems to be fairly widely
supported and is quite simple. The alterna-
tives (such as defining position by the number
of items which can be read from the file) seem
to give designs which are difficult both to un-
derstand and to use.

3.5 Handle Properties

There are several functions that query a han-
dle to determine its properties: hIsOpen,
hIsClosed, hIsReadable, hIsSeekable and so
on. Originally we considered a single opera-
tion to return all the properties of a handle.
This proved to be very unwieldy, and would
also have been difficult to extend to cover other
properties (since Haskell does not have named
records). The operation was therefore split into
many component operations, one for each prop-
erty that a handle must have. Determining the
current I/O position is treated as a separate op-
eration.

While there are hIsOpen and hIsClosed op-
erations, there is no way to test whether a
handle is semi-closed. This was felt to be of
marginal utility for most programmers, and is
easy to define if necessary.

hIsSemiClosed :: Handle -> I0 Bool
hIsSemiClosed h =
hIsOpen h >>= \ ho ->
hIsClosed >>= \ hc ~>

return (mot (ho || he))

3.6 Text Input

The function hReady determines whether input
is available on a handle. It is intended for writ-
ing interactive programs or ones which man-
age multiple input streams. Because it is non-
blocking, this can lead to serious inefficiency if
it is used to poll several handles.

3.7 Text Output

Most of the text output operations which are
provided have already been described earlier.
The distinction between hPutStr and hPutText
is worth emphasis. Function hPutText outputs
any value whose type is an instance of the Text

58

class, quoting strings and characters as neces-
sary. Function bPutStr outputs an unformat-
ted stream of characters, so tabs appear as lit-
eral tab characters in the output and so on. For
example, the following outputs the two words
Hello and World on a line, separated by a tab
character,

import LibIO
main = putStr stdout "Hello\tWorld\n"

whereas the following outputs the string
"Hello\tWorld\n".

import LibIO
main = putText stdout "Hello\tWorld\n"

4 The Other Libraries
4.1 LibDirectory

Operations are provided in LibDirectory to

e retrieve the current working directory
(getCurrentDirectory);

o set the current directory to a new directory
(setCurrentDirectory);

e list the «contents of a
(getDirectoryContents);

directory

o delete files or directories (removeFile and
removeDirectory);

e and to rename files or directories
(renameFile and renameDirectory).

No status operations are provided. Haskell
1.2 statusFile/statusChan were rarely, if
ever, used. Their functionality is probably bet-
ter provided by operating-system specific oper-
ations, which can give more exact information.

4.2 LibSystem

The LibSystem library defines a set of func-
tions which are used to interact directly with
the Haskell program’s environment. The most
important of these are systen, which introduces
a new operating system task and waits for the
result of that task, and getArgs which returns
the command-line arguments to the program.
It is possible that neither of these functions is
available on a particular system, for example,
these commands do not generally make sense

under the Macintosh operating system (though
they do make some sense when applications are
run under command-based shells such as MPW
or AppleScript). When using systen note that
the commands which are produced are operat-
ing system dependent. It is entirely possible
that these commands may not be available on
someone else’s system, so programs which use
system may not be portable. Here is how to
create a soft-linked alias to a file under Berkeley
or similar Unixes.

module Link where
import LibSystem
link old new =
system ("ln -s “++old++" “++new)

Exit Codes

As described earlier in Section 2.3, programs can
terminate immediately and return an exit code
to the operating system using exitWith. Its
argument is of type ExitCode, whose only con-
structors are ExitSuccess and ExitFailure.

Environment Variables

Simple access to environment variables is sup-
ported through the getEnv computation. This
functionality is generally available in most op-
erating systems in some form or other. When
available it provides a useful way of commu-
nicating infrequently-changed information to a
program (which it is inconvenient to specify on
the command-line for shell-based systems).

4.3 LibTime and LibCPUTime

The LibTime library provides operations that
access time and date information (useful for
timestamping or for timing purposes), including
simple data arithmetic and simple text output.
It codifies existing practice in the shape of the
Time library provided by hbc. Unlike that li-
brary it is not Unix-specific, and it provides sup-
port for international time standards, includ-
ing time-zone information. Time differences are
recorded in a meaningful datatype rather than
as a double-precision number.

4.4 LibUserInterrupt

User-produced interrupts are the most impor-
tant class of interrupt which programmers com-

59

monly want to handle. Almost all platforms,
including smail systems such as Macintosh and
MS/DOS, provide some ability to generate user-
produced interrupts.

User interrupts can be handled in Haskell if
a handler is installed using setUserInterrupt.
Whenever a user interrupt occurs, the program
is stopped. If an interrupt handler is installed,
this is then executed in place of the program.
If no interrupt handler is installed, the pro-
gram is simply terminated with an operating
system failure code. For example, the following
program installs an interrupt handler ihandler
that prints “C on stdout and then continues
with some new computation.

main = setUserInterrupt ihandler >>

ihandler = (putStr "~C") > ...

4.5 LibPOSIX

A library (LibP0SIX) has been defined that
builds on the basic monadic I/O definition
to provide a complete interface to POSIX-
compliant operating systems. There is insuffi-
cient space to describe this library in detail here,
but the library includes facilities to manipulate
file protections, control processes, handle more
kinds of interrupt than userInterrupt etc.

5 Combinator Parsing

In this section we illustrate monadic I/O in
Haskell by writing a lexer and parser for un-
typed lambda-calculus. Our parser recognises
strings of characters input from a handle. The
characters are first grouped into tokens by the
lexer. The parser acts on the sequence of tokens.

A Lexer

A token is either an alphanumeric identifier (be-
ginning with a letter), a special symbol from the
following list,

symbols = "()\\="

or elge an illegal character. Tokens are repre-
sented by the following datatype.

data Token
= ALPHA String | SYMBOL Char
| ILLEGAL Char | EoF
deriving (Eq, Text)

The EoF token indicates end of file. Here is a
simpler lexer.

hGetToken ::
hGetToken h =
hISEQOF h >>= \b ->
if b then return EoF else
hGetChar h >>= \c¢ ->
if isSpace ¢ then hGetToken h else
if isAlpha c then hGetAlpha h [c] else
if ¢ ‘elem‘ symbols then
return (SYMBOL c)
else
return (ILLEGAL c)

Handle -> I0 Token

hGetAlpha :
hGetAlpha h cs =
hISEQOF h >>= \b -> if b then
return (ALPHA (reverse cs)) else
hLookAhead h >>= \¢ ->
if isAlphanum c then
hGetChar h >> hGetAlpha h (¢ : ¢s)
else
return (ALPHA (reverse cs))

If h is a handle, hGetToken A returns tok, the
next token readable from handle h. The lexer
ignores whitespace when forming tokens.

Parser Combinators

We can write predictive recursive-descent
parsers [2] using combinators. In a predictive
parser the lookahead token unambiguously de-
termines the recursive function to be applied at
each point.

Our type of parsers is a parameterised state-
transformer monad built from the 10 monad.

type Parser a =
Handle -> Token -> 10 (a, Token)

Given a handle h and a lookahead token tok0,
a parser of type Parser a may do one of three
things.

Accept a phrase with result z :: a. The
parser consumes the tokens of the phrase
by calling hGetToken h and then returns
(z,t0kl) where tokl is the new lockahead
token.

Fail with a lookahead error. The parser
consumes no tokens and immediately
fails with an error result of the form
UserError (’L’:msg), a lockahead error.

60

Fail with a parse error. The parser con-
sumes some number of tokens and then
fails with an error value of the form
UserError (’P’:msg), a parse ervor.

Failure with a lookahead error is used to select
alternatives based on the lookahead token; fail-
ure with a parse error indicates an unparsable
input. The difference between parse and looka-
head errors is coded using the first character of
the error string. It would be better to use two
different constructors, but there is no way for
programs to extend I0Error.

The top of Appendix B shows operations on
error values. Computation lookaheadError z y

: Handle -> String -> I0 Tokenimmediately fails with a lookahead error indi-

cating that z was expected by y was found.
Predicate isLookahead determines whether an
error value is a lookahead error. Whether
e is a parse or lookahead error, computation
mkParseError e turns it into a parse error and
then fails with it.

The middle of Appendix B shows the imple-
mentation of the Parser monad. Token match-
ing is performed by match. Its second argu-
ment i3 a predicate of type Token -> Maybe a.
Given an error string e and a predicate f, parser
match e f applies the predicate to the looka-
head token. If the outcome is Just y, mean-
ing that the lookahead token is accepted, then
another one is obtained using hGetToken, and
the parser’s result is y. Otherwise if the out-
come is Nothing, meaning that the lockahead
is rejected, the parser immediately fails with a
lookahead error.

If p and q are parsers, p ‘alt‘ ¢is the parser
that accepts all the phrases accepted by either
p or g, provided that the choice is determined
by the lookahead token. The parser first runs
parser p. If p either accepts a phrase or fails
with a parse error, then so does p ‘alt‘ ¢. But
if p fails with a lookahead error-—in which case
the lookahead is unchanged but rejected—then
q is run instead.

Functions returnP and thenP are the two
standard monadic functions, analogous to
return and >>= on the I0 monad. Parser
returnP z accepts the empty phrase and returns
result z. If parser p accepts a phrase with result
z, then p ‘thenP‘ f consumes that phrase and
then acts as parser f{z). Any lookahead error
from f{z} must be turned into a parse error be-
cause p may already have consumed tokens. If

parser p fails with a lookahead or parse error,
then so does p ‘thenP* f.

Finally, if p is a parser and A a handle, parse p
is the computation that runs p on the tokens
obtainable using hGetToken h.

The primitives in Appendix B are enough to
build arbitrary predictive parsers. The bottom
of the appendix shows some derived parser func-
tions. Parser theToken tok accepts the token tok
and returns it as its result. Parser ident accepts
any alphanumeric token, and returns its String
representation. On any other input, both these
parsers fail with a lookahead error.

Function seqP is an unparameterised form of
thenP; it is analogous to >>. Function >< runs
two parsers in sequence, and returns their re-
sults as a pair. If p is a parser, repeatP p ap-
plies p repeatedly until it fails with a lookahead
error; it returns the list of accepted results as
its result.

A Parser

Suppose we want to parse untyped lambda-
calculus programs such as the following.

true = \(X)\(y)x
false = \(X)\(yy

zero = \(E)\(x)x
suce = \(@\(E\xIn(£) (£(x))

Here is a suitable grammar.

decl
exp

{ident "=" exp} EOF
ident

\l\ll H(Il ident ll)ll exp
exp \l(u exp u)n

The conventions are that X Y means X followed
by ¥, X | Y means X or Y, and {X} means a
possibly empty sequence of X’s. The following
datatype represents lambda-terms.

data Exp
= VAR String | LAM String Exp
| APP Exp Exp
deriving Text

As usual, we must remove left-recursion to make
‘the grammar suitable for recursive descent pars-
ing.

decl0 = {decli} EoF
decll = ident "=" exp0
= expl { exp2 }

exp0

61

expl =
exp2

ident | “\" "(" ident ")" exp0
ll(ll expo \l)\'

The following recursion equations represent this
transformed grammar as predictive parsers.

declO =
repeatP decll ‘thenP® \x ->
theToken EoF ‘seqP‘ returnP x

decll =
ident ‘thenP‘ \x -> eq ‘seqP’
exp0 ‘thenP‘ \t -> returnP (x,t)

exp0 =
expl ‘thenP‘ \t ->
repeatP exp2 ‘thenP‘ \ts ->
returnP (foldl APP t ts)

expl =
(ident ‘thenP‘ (returmP .
‘altP*
(lambda ‘seqP‘ lp ‘seqP‘
ident ‘thenP‘ \x -> rp ‘seqP‘
exp0 ‘thenP‘ \t ->
returnP (LAM x t))

VAR))

exp2 =
lp ‘seqP‘ exp0 ‘thenP‘ \t ->
rp ‘seqP‘ returmP t

where

{1p,rp,lambda,eq] =
map (theToken . SYMBOL) symbols

If our main program is

main :: I0 O
main = parse decl0 stdin >>= print

here is its output on the declarations shown at
the beginning of this section.

t(lltme"’ LAM "xtl (LAM Ilyll (VAR “x“))),
(llralsell’ LAM "x“ (LAH llyll (VAR |lyll)))’

("cond”, LAM "b* (LAM "t" ...)),
("zero" , LAM “£% (LAM uyett .)) s
("succ" s LAM #n* (LAM nguw .))]

Discussion

Combinator parsers—like any other recursive
descent parsers—are less efficient than bottom-
up table-driven parsers. But they can be quickly
and simply written, and for many purposes they

are fast enough. Previous examples represented
their input as a list, and hence supported arbi-
trary lookahead [16]. Some in addition repre-
sented their output as a list of possible parses,
to cater for ambiguous grammars (3, 6, 13].
Our parsers manage their input imperatively us-
ing hGetToken. They are predictive—they use
only a single lookahead token. They only re-
turn a single successful parse. But this suf-
fices for many computer languages, if not nat-
ural language. Managing arbitrary lookahead
would require significant re-organisation of the
program. Of course, Haskell 1.3 continues to
support stream-style parsing via the interact
function. The standard prelude includes simple
parsers of type

type ReadS a = String -> [(a,String)]

and pretty-printers for types in the Text class.
The monad developed in this section shows that
the combinator parsing idiom applies to imper-
ative parsing too. Our monad is more flexible
than the ReadS style because it allows parsing
to be freely mixed with other imperative com-
putations.

Exercises

(1) Extend the program with an evaluator for
lambda-calculus terms. Use de Bruijn’s
name-free representation of lambda-terms,
instead of the naive datatype used here.
Chapter 9 of Paulson’s book [16] is a good
starting point.

(2) Extend the lexer to recognise numerals.
Extend the grammar and parser with syn-
tax for numerals and binary arithmetic op-

erators.

(3) Rewrite the lexer using a Haskell array to
dispatch on whether the next character is

whitespace, alphabetic, symbolic or illegal.
(4)

Find a grammar that can be parsed with
arbitrary lookahead but not by a predictive

parser.

(5) Modify the Parser monad to admit arbi-
trary lookahead. Hint: use the following
definition of Parser, which explicitly rep-
resents lookahead errors rather than using

the builtin error-handling mechanism.

62

type Parser a =
Handle -> [Token] ->
I0 ([Token], Maybe (a, [Token]))

If such a parser is run on a handle & with
lookahead toks, it returns pair (toksl,m)
where toks! is the new lookahead, and m
is either Nothing if the parse has failed or
Just (z,toks2) if the parse was successful.
In the latter case, zis the result of the parse
and toks2 is the list of tokens accepted.

6 History and Related Work

Monadic I/O dates from 1989. Cupitt [5] built
a functional operational system (KAQOS) in Mi-
randa. He was the first to make large-scale use
of types, similar to I0 a, for computations re-
turning an answer of type a. Independently,
about the same time, Gordon [7] proposed a
concurrent language called PFL+ with a similar
type constructor. 1989 was also the year Moggi
first published his theory of modular denota-
tional semantics (15] based on the categorical
notion of a strong monad. Inspired by Moggi,
Wadler popularised monads as a functional pro-
gramming technique for dealing with state [19].
With Peyton Jones he proposed an I0 monad,
similar to the one of this paper, for expressing
I/O in Haskell {18]. Gordon’s book [8] surveys
previous work on functional I/O in general and
monadic I/O in particular. The contribution of
Haskell 1.3 is a detailed standard for portable
monadic I/O in Haskell, using handles to access
the file system.

There is 2 good deal of current work on graph-
ical interfaces to functional languages, such as
the work on Concurrent CLEAN (1] and Fud-
gets [4]. Graphics is beyond the intended scope
of Haskell 1.3, but we would welcome any pro-
posals for a standard monadic library for ex-
pressing graphical interfaces.

Returning an error value from a computation
is analogous to raising an exception in a lan-
guage like ML, except that in Haskell only ex-
pressions of I0 type may return an error value.
See Hammond’s book [11] for a discussion of er-
ror values in functional languages.

6.1 Computations and Effects

The type I0 a denotes computations in the same
sense as Integer denotes integers and Bool de-
notes truth-values. To a first approximation at
least we can think of computations as functions
which take the state of the world as their ar-
gument and return a pair of an updated world
and a result [18]. The main thread, defined by
Main.main, is a sequence of state-transforming
computations of type I0 a, which directly ex-
press effects on the environment, such as char-
acter I/O, or reading and writing files. Each of
the sequence of computations is applied to an
implicit program state, to produce a new state
together with an intermediate result. The new
state and result is passed to the next computa-
tion in the sequence, and so on until the program
terminates.

Within the Haskell program, expressions of
type I0 a behave identically to other expres-
sions: they may appear evaluated or unevalu-
ated in lists, be freely copied, and so on. Haskell
expressions do not have side-effects unless they
are evaluated by the top-level thread of control.

6.2 Parallelism

The interaction with parallelism is important,
especially for extensions of Haskell such as the
pH language. Handled carelessly, I/O could un-
necessarily serialise computations and thus re-
duce performance. Some thought has gone into
this. The semantics of I/O is serialisable in the
sense that I/O operations interact with the op-
erating system in the order they are presented
at the top-level. If, however, two I/O operations
do not conflict (for example, reading two differ-
ent files), then it is entirely possible for them
to proceed in parallel. It is still necessary, how-
ever, to ensure that error values are propagated
as defined by the serial semantics. This may
require a mechanism similar to that needed for
controlling other speculative computations.

7 Summary

We have presented a design for I/O which has
been adopted in the Haskell standard, describ-
ing some interesting aspects of the design and
providing a tutorial on how it can be used effec-
tively. Being based on the use of monads, the
design is both flexible and extensible. Although

63

only a fairly conservative basic design has been
provided initially, we expect this to form the
basis for more radical research departures. It
already provides much useful functionality that
was not previously available in Haskell 1.2.

No formal semantics for these I/O primitives
is possible at present, because there is no com-
plete formal semantics for Haskell itself. We
hope in future that such a semantics will be de-
veloped. One task of such a semantics would
be to show that the I0 type does indeed form a
monad in the categorical sense.

Haskell 1.3 allows programmers to write pro-
grams that can change the externmal or global
states in an imperative fashion, but only via ex-
pressions of some type I0 g, and only when they
are then interpreted by the top-level thread of
control. This contrasts with languages like LISP
or ML, where expressions of any type can have
side-effects. Our hope is that I/O in Haskell 1.3
will be no less expressive than in LISP or ML,
and that its type system can be exploited by
programmers and compilers to yield clear and
efficient programs.

Acknowledgements

We are grateful to the other members of Haskell
committee who have made many constructive
comments on the I/O design during its period
of incubation. We would also like to thank those
people who have either contributed directly to
the I/O design, or whose comments have had
a significant impact on the design. These have
included Andy Gill and Ian Poole (who both
worked on previous versions of the Haskell de-
sign), Jim Mattson (who designed LibPOSIX),
Jon Fairbairn, Ian Holyer, Kent Karisson, San-
dra Loosemoore, and Alastair Reid. We are also
grateful to Will Partain and Hans Loid! for com-
menting on draft versions of this paper and to
the anonymous referees who reviewed this pa-
per.

References

(1]

2l

7]

(11]

(12]

Peter Achten and Rinus Plasmeijer. The ins
and outs of Concurrent Clean I/0. Journal
of Functional Programming, 5(1), 1995.

Alfred V. Aho, Ravi Sethi, and Jeffrey D.
Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1986.

W. H. Burge. Recursive Programming
Techniques. Addison Wesley, 1975.

Magnus Carisson and Thomas Hallgren.
FUDGETS: A graphical user interface in
a lazy functional language. In FPCA’93:
Conference on Functional Programming
Languages and Computer Architecture,
Copenhagen, pages 321-330. ACM Press,
1993.

J. Cupitt. A brief walk through KAOS.
Technical Report 58, Computing Labora-
tory, University of Kent at Canterbury,
February 1989.

R. Frost and J. Launchbury. Construct-
ing natural language interpreters in a lazy
functional language. The Computer Jour-
nal, 32(2):108-121, April 1989.

Andrew Gordon. PFL+ : A kernel scheme
for functional I/O. Technical Report 160,
University of Cambridge Computer Labo-
ratory, February 1989.

Andrew D. Gordon. Functional Program-
ming and Input/Output. Cambridge Uni-
versity Press, 1994.

K. Hammond et al. Report on the pro-
gramming language Haskell: Version 1.3.
Yale University Technical Report, to ap-
pear, June 1995.

K. Hammond, J. W. Peterson, et al. Stan-
dard libraries for the programming lan-
guage Haskell: Version 1.3. Yale University
Technical Report, to appear, June 1995.

Kevin Hammond. PSML: g Functional
Language and its Implementation in Dactl,
Pitman Press, 1991.

Paul Hudak, Simon L. Peyton Jones, Philip
Wadler, et al. Report on the functional

64

[15]

(16]

[17]

18]

[19]

programming language Haskell: A non-
strict, purely functional language: Version
1.2. ACM SIGPLAN Notices, 27(5), March
1992. Section R.

Graham Hutton. Higher-order functions for
parsing. Journal of Functional Program-
ming, 2(3):323-343, July 1992.

Kent Karlsson. Nebula: A functional oper-
ating system. Programming Methodology
Group, Chalmers University of Technology
and University of Gothenburg, 1981.

Eugenio Moggi. Computational lambda
calculus and monads. In Proceedings of
the 4th IEEE Symposium on Logic in Com-
puter Science, June 1989.

Lawrence C. Paulson. ML for the Working
Programmer. Cambridge University Press,
1991.

Nigel Perry. The Implementation of Prac-
tical Punctional Programming Languages.
PhD thesis, Department of Computing, Im-
perial College, London, June 1991.

Simon L. Peyton Jones and Philip Wadler.
Imperative functional programming. In
Proceedings 20th ACM Symposium on
Principles of Programming Languages,
Charleston, South Carolina, January 1993,
pages 71-84. ACM Press, 1993.

Philip Wadler. The essence of functional
programming. In Proceedings of the Nine-
teenth ACM Symposium on Principles of
Programming Languages, 1992.

A Summary of I/O Operations

This is an unstructured list of the fixities, types, instances, and values supported by the Haskell 1.3
I/0 libraries.

infixr 1 >>, >>= -~ Prelude
type I0 a -- Prelude
type Handle -~ LibIOD
type FilePath = String -- LibID
data I0Mode = ReadMode -- LibI0

| ¥riteMode

| AppendMode

| ReadWriteMode
data BufferMode = NoBuffering == LibI0

| LineBuffering

BlockBuffering (Maybe Int)

data HandlePosn -- LibID
data SeekMode = AbsoluteSeek -- LibI0

| RelativeSeek

} SeekFromEnd
data ExitCode = ExitSuccess -~ LibSystem

ExitFailure Int

data ClockTime == LibTime
instance 0rd ClockTime -=- LibTime
instance Eq ClockTime ~= LibTime
instance Text ClockTime -~ LibTime
data CalendarTime = == LibTime

CalendarTime Int Int Int Int
Int Int Integer
Int Int String
Int Bool

data TimeDiff = -- LibTime
TimeDiff Int Int
Int Int Int Int Integer
deriving (Eq,0rd)

stdin, stdout, stderr :: Handle -- LibIO0

Operations

The set of I/O operations is sorted alphabetically.

(>>=) :: ID a -> (a => I0 b) ~>1I10b

>>) ;2 I0 a ->10bd ->1I10b
accumilate 12 [I0 a] -> 10 [a]
addToClockTime :: TimeDiff ~> ClockTime -> ClockTime
appendFile :: FilePath -> String ->1I0 O
createDirectory :: FilePath -> 10 O
diffClockTimes :: ClockTime -> ClockTime -> TimeDiff
either :: (a=>¢) > (b ~> ¢) -> (Either a b) => ¢

65

eofI0Exror

exitWith

fail

getArgs

getChar
getClockTime
goetCPUTime
getCurrentDirectory

getDirectoryContents :

getEnv
getProgName
handle

hClose
hFileSize
hFlush
hGetBuffering
hGetChar
hGetContents
hGetPosn
hIsClosed
hISEQF
hIsOpen
hIsReadable
hIsSeekable
hisWritable
hlLookAhead
hPutChar
hPutStr
hPutText
hReady

hSeek
hSetBuffering
hSetPosn
interact
ioeGetHandle
ioceGetFileName

isAlreadyExistsError :

isAlreadyInUseError
isFullError
isEQFExrror
isIllegalOperation
isPermissionError
isUserError

isEQF

openFile

print

putChar

putStr

putText

readFile
removeDirectory
removeFile
renameDirectory
renameFile

return

sequence
setCurrentDirectory

: I0 a

LTI

.

:: Text a
:: Handle

v sb ee es ae

e a0 s

L T I Y A T

e s e

.

e e se as

:: ExitCode
:: IDError

FilePath
String

Handle
Handle
Handle
Handle
Handle
Handle
Handle
Handle
Handle
Handle

:: Handle
:: Handle
:: Handle

Handle
Handle
Handle

=> Char
-> String
=> Handle

Handle
Handle
HandlePosn
(String ~-> String)
I0Error

I0Error

I0Exrror

I0Error

IDError

I0Error

I0Error

I0Error

I0Error

FilePath -> IOMode
Text a => a
Char

String

Text a => a
FilePath

FilePath

FilePath

FilePath -> FilePath
FilePath -> FilePath

a
{10 a]
FilePath

66

-> SeekMode
-> BufferMode

-> (I0Error -> I0 a)

-> a

=> Integer

->

=->
->

->
->
->
->
->
->
->
->

->
->
->
->
->
->
->
->
->

->
->
->

->
->
->
->
->
->
->
->

->
->
->

->
->
->
->
=->
->
->
->
->

IQError

10 a

I0 a

I0 [Stringl
10 Char

I0 ClockTime
I0 Integer
I0 FilePath
I0 [FilePath]
I0 String

I0 String

10 a

I0 O

I0 Integer
0 O

I0 (Maybe BufferMode)
I0 Char

I0 String
10 HandlePosn
10 Bool

10 Bool

I0 Bool

I0 Bool

I0 Bool

I0 Bool

10 Char

0 OO

10 O

0 O

I0 Bool

I0 O

0 0

0 O

0 O

Maybe Handle
Maybe FilePath
Bool

Bool

Bool

Bool

Bool

Bool

Maybe String
10 Bool

10 Handle

10 O

10 O

0 O

I0 Q

I0 String

0 O

0 O

0 O

0 0

10 a

I0 O

I0 O

setUserInterrupt
system
toCalendarTime
toUTCTime
toClockTime

try

userError
vriteFile

:: Maybe (I0 ())

:: String

:: ClockTime

:: ClockTime

:: CalendarTime

:: I0 a

:: String

: FilePath -> String

67

I0 (Maybe (I0 O))

I0 ExitCode
CalendarTime
CalendarTime
ClockTime

10 (Either IQError a)
I0Error

10 O

B Example: Parsing Routines

—-— Qperations on Errors

lookaheadError :: String -> String -> IO a
isLookahead :: I0Error -> Bool
mkParseError :: IQError -> 10 a

lockaheadExror exp fnd =

fail (userError "L: Expected "++exp++" but found "++fnd)
isLookahead e = case (isUserError e) of

Just (°L’:.) -> True

_ => False
mkParseError e = case {isUserError e) of

Just (’L’:msg) -> fail (userError (’P’:msg))

_ => fail e

-~ Implementation of the Parser Monad

match :: String -> (Tokem -> Maybe a) -> Parser a
altP :: Parser a -> Parser a -> Parser a
returnP :: a -> Parser a

thenP :: Parser a -> (a => Parser b) -> Parser b
parse :: Parser a -> Handle -> I0 a

match ¢ £ h tokQ =

case £ tokQ of

Just x -> hGetToken h >>= \tokl -> return {(x, tokl)

Nothing ~> lookaheadError e (show tokO)
(pt ‘altP‘ p2) h s =

pl h 8 ‘handle’ \e ->

if is_lookahead e then p2 h s else mkParseError e
returnP a h s = return (a, s)
(p ‘thenP‘ f) h s = p h 8 >>= \(a,s) -> f a h s ‘handle‘ mkParseError
parse p h = (hGetToken h >>= p h) >>= (return . fst)

-~ Derived Parser Functions

theToken:: Token -> Parser Token

ident :: Parser String

seqP :: Parser a -> Parser b -> Parser b
(><} : Parser a -> Parser b -> Parser (a,b)
repeatP :: Parser a -> Parser [a]

theToken tok = match (show tok) (\tok0 =-> if tok==tok0 then Just tok else Nothing)
ident = match "<ident>" (\tok0 -> case tok0 of
ALPHA x -> Just x
- => Nothing)
Pl ‘seqP‘ p2 = pi ‘thenP‘ const p2
(p1 >< p2) = pl ‘thenP‘ \x -> p2 ‘thenP‘ \y -> returnP (x,y)
repeatP p = (p >< repeatP p ‘thenP‘ (returnP . uncurry (:))) ‘altP‘ returnP [J

68

Designing the Standard Haskell Libraries
(Position Paper)

Alastair Reid and John Peterson
Department of Computer Science, Yale University,
P.O. Box 208285, New Haven, CT 06520, USA.
Electronic mail: {reid-alastair,peterson-john}@cs.yale.edu

June 4, 1995

Abstract

Five years after the first Haskell report was published, the Haskell language continues
to grow and mature. After five years experience of Haskell programming, we wish to
both expand and simplify the Haskell language. Over the years, many Haskell libraries
have been developed. The Haskell Committee is expanding the language by standard-
ising a set of libraries to add to the definition of Haskell. Another goal is to simplify
Haskell by moving parts of the prelude, a built-in set of types and functions implicitly
a part of every Haskell program, into libraries where they can be loaded on demand,
This document describes the issues involved in the design of the Haskell libraries and
summarises the library modules being considered.

1 Motivation

In the five years since the Haskell programming language was created, Haskell programmers
have developed libraries providing many useful functions and datatypes. Each implemen-
tation of Haskell currently distributes home grown libraries. Using these libraries speeds
development but decreases portability because these libraries are not available on all plat-
forms. We believe that many of the functions and types in these libraries should become
a standardised part of Haskell 1.3 (with further libraries being added in later revisions).
Standardising these libraries will:

1. Increase the power of the language by providing a much greater level of basic func-
tionality in the standard.
2. Improve the portability of programs by eliminating the need for non-standaid libraries.

3. Avoid the splintering of Haskell into different dialects where programmers familiar
with the HBC libraries (say) would not be able to understand a program written
using the GHC libraries.

69

The major argument against standardising libraries is that doing so increases the size of
language — both the amount new programmers must learn and the size of implementations.
We feel that the increased utility of the language outweighs this concern.

The Haskell language has what is essentially a built-in library called the standard prelude.
The prelude is special only in that it is implicitly imported into every program. Moving the
infrequently-used components of the prelude into libraries has two advantages: it shrinks
the core language, making the essential components of Haskell more apparent; and it frees
up more of the namespace for the user.

This document describes the issues that arise in turning the existing libraries into a concrete
library proposal and briefly summarises each library. This document does not discuss
changes to the libraries or prelude which are related to the I/Q proposal; these are described
in Gordon and Hammond’s tutorial paper {3]. Detailed definitions of the libraries are
supplied in a companion document [11].

Acknowledgements

We are grateful to members of the Yale, Glasgow and Chalmers functional programming
groups (especially Sandra Loosemore, Dan Rabin, Will Partain, Jim Mattson, Andy Gill,
Kevin Hammond and Kent Karlsson), Mark Jones, Ian Poole, Nick North, Paul Otto and
the other members of the Haskell 1.3 committee for detailed comments on the design criteria
and the design of the libraries.

We are especially grateful to the GRASP/AQUA team at Glasgow and to Lennart Augusts-
son at Chalmers for providing the basis on which much of the library design is built.

2 Design Issues

The main questions to be answered when designing library modules are:

What should be included?

What should go in the libraries and what should go in the prelude?
What should go in each module?

What classes should each new type be an instance of?

What should the type and name of each function be?

How should library functions be defined in a standard?

How do libraries interact with other aspects of Haskell?

We address each of these questions in turn.

2.1 What should be included?

To be included in the standard libraries, an entity (type, type-class or function) must satisfy
two criteria:

70

1. It must be clear what the interface should look like — it is much harder to remove or
correct a feature once it has been included in the language standard.

2. The entity must be useful to a “significant number” of programmers.

Since the standard libraries draw heavily on existing libraries, we have some confidence that
the interfaces have been tested in real programs.

Entities which cannot be implemented efficiently in standard Haskell because they require
special support in the compiler or runtime system deserve special consideration since users
have no portable alternative.

Since the primary goal of having standard libraries is to improve portability, Haskell im-
plementations are required to provide all of the standard libraries and are not permitted to
add, modify, or omit entities. Implementors are encouraged to provide optimised versions of
library functions provided that the optimised version has the same ezternal behaviour (type,
strictness, error conditions, etc) as in the specification.

2.2 What should go in the libraries and what should go in the prelude?

The only operational difference between entities defined in the prelude and those defined in
a library is that the prelude is automatically imported into every Haskell module whereas
libraries must be explicitly imported. This division into prelude and libraries does not
imply that the libraries are optional (they’re not) or that the prelude cannot import library
modules (it can). On the other hand, entities in the prelude can be considered “more
essential” to the language. Students of Haskell would be expected to learn about the
prelude before looking into the libraries.

It is slightly more convenient to use entities from the standard prelude than from a library.
But, each entity placed in the prelude “steals” a potentially useful name from programmers.
To avoid name clashes, programmers must give their own entities different names, or use
hiding or renaming.

In order to justify “stealing a name” from the user, each entity in the prelude must satisfy
one or more of the following criteria:

1. It is very heavily used by all programmers. For example, the existing functions map
and show are so heavily used that programmers are unlikely to use the name for any
other purpose.

2. It occurs in introductory functional programming courses/textbooks. For example,
interact is not heavily used in large programs but including it in the prelude avoids
or delays the need to teach students about Haskell’s module system.

Experience with Haskell 1.2 suggests that arrays, rational numbers and complex numbers are
not used heavily enough to justify their inclusion in the prelude. Therefore PreludeArray,
PreludeRatio and PreludeComplex will be libraries in Haskell 1.3. Similarly, the functions
ord, chr, isControl, isPrint, etc. in the module Prelude are rarely used and will be
moved to module LibCharType.

71

2.3 What should go in each module?

Each library module comprises one of:

1. A single (abstract) data type. (Or a family of types and corresponding type class in
the case of LibWord.)

2. A single type class.

3. A set of closely related utility functions.

For example, operations on lists are divided into modules LibLength, LibDuplicates,
LibScan, LibSubsequences, etc. rather then being grouped into a single module. Our
goal is to keep libraries small and self-contained so that programmers can import those
functions they need without importing many. functions they don’t need.

2.4 What classes should each new type be an instance of?

In Haskell 1.2, an instance of a class must be defined in either the module that defines
the class or in the module that defines the instance. This rule makes it impossible for
the programmer to add an instance if it has been omitted from the prelude or libraries.
Therefore care must be taken to define every possible instance of every possible class to
avoid leaving the programmer high and dry.

At the time of writing, it seems likely that this rule will be relaxed in Haskell 1.3 to allow
a given instance to be defined anywhere in the program — provided there is at most one
instance. Nevertheless, it is important to provide every possible instance for all abstract
data types — and most reasonable instances for all other types.

The question of where to define an instance is also important. If instances are defined
in the modules that defines the classes, importing a class might cause a large amount of
unwanted code (associated with types that the programmer is not using) to come into scope.
If instances are defined in the modules that define the types, importing a type might cause
a large number of unwanted code (associated with classes the programmer is not using) to
come into scope. Both seem to result in a very cluttered name space and large compiled
programs. We don’t have a good solution at the moment.

2.5 What should the type and name of each function be?

The primary goal in choosing names is that it should be possible to guess the purpose of a
function from its name and type signature. In some cases it may be appropriate to change
the names of existing prelude functions to achieve this goal (e.g. a better name for null
would be isEmpty).

Secondary considerations include:

72

1. Consistency with the existing Haskell prelude.

For example, modules LibSet, LibBag and LibFiniteMap all provide a function anal-
ogous to the prelude function filter to “select” values from a collection. We use the
names filterSet, filterBag and filterFM for these functions.

2. Consistency between different libraries.

For example, modules LibSet, LibBag and LibFiniteMap all provide a function to
combine sets, bags or datatypes (respectively). We use similar names (unionSet,
unionBag and unionFM) for all three functions.

At the time of writing, it seems likely that Haskell 1.3 will provide a form of “qualified
names” allowing one to import several entities with the same name and using the
module name as a qualifier to resolve any ambiguity. If this proposal is adopted,
both the Lib prefixes on the module names and the type suffixes on the function
names would be dropped — the functions being called Set.union, Bag.union and
FiniteMap.union respectively.

3. Consistency with the existing Haskell naming conventions.

For example, identifiers formed by the concatenation of several words use capitalisa-
tion rather than underscores to separate the words.

4. We try to avoid using a name if a programmer might reasonably use the name for
some other purpose.

In a language that encourages use of partial application and allows any binary function to
be used as an infix operator, it is important to consider possible uses of a function when
choosing the order of arguments. For example, a function which modifies an object of type
T should take this object as the last argument. Thus add would have type a -> Set a ->
Set a instead of Set a -> a -> Set a.

2.6 How should library functions be defined in a standard?

With the exception of primitive arithmetic and I/O-related functions, all functions in the
Haskell 1.2 prelude are described in English in the body of the report and defined in Haskell
in an appendix. Providing a Haskell definition avoids ambiguity but can be very verbose
and hard to understand (see, for example, PreludeText).

For some functions, we might wish to be deliberately ambiguous: all a programmer needs
to know about a sort function is whether it is stable and for which inputs it behaves
efficiently — details about the choice of algorithm are best left to the implementor. For these
functions, it is more appropriate to provide an English description of the function backed
up by mathematical identities, error conditions and strictness properties as appropriate.

For all other functions (i.e., those simple enough that they are best specified in Haskell),
the required semantics is precisely that of the definition — implementors are not free to

73

change the semantics to improve performance.}

Some types such bitsets and random states we wish to leave the implementor free to choose
an efficient representation but wish to constrain the behaviour sufficiently to guarantee

portability. In these cases, a reference implementation is provided in Haskell but the repre-
sentation is not exported from the defining module.

Dealing with the strictness properties of library functions is a particular problem. In many
cases, the strictness of a function depends on the order in which tests for errors or special
conditions are made. For some functions, laziness is crucial to the program; for others,
it makes little difference. The standard can either be very precise about strictness or
it can allow implementations to choose whatever strictness properties lead to the best
implementation. We propose to explicitly mark functions for which the implementation is
free to alter the strictness properties. Most of the others can be defined in Haskell, which
precisely defines the strictness. To avoid introducing subtle portability problems, we plan
to keep the number of functions with undefined strictness properties as small as possible.

As in the existing prelude, implementations are free to alter calls to the error function in
library functions. Error messages may be changed freely to make them more useful. Library
functions should detect errors as early as possible and report them clearly.

The libraries introduce a number of new types which are similar to existing types (e.g.
PackedStrings are similar to Strings, FiniteMaps to association lists and arrays, Sets to
lists). The relationship between two types can often be described by a pair of functions
(f:2U - V,g::V — U) such that go f = id. By abuse, we call such pairs “retraction
pairs” and write (f,g) : U « V. (The complete definition of “retraction pairs” would
require that fo g C id for an appropriate choice of domain.) When a retraction pair exists,
it is natural to use the pair to define the semantics of functions over the new types in
terms of corresponding functions over the old types. For example, the retraction pair for
packed strings (unpackPS,packString) : PackedString « String can be used to define
the functions

headPS :: PackedString -> Char
headPS = head . unpackPS

tailPS :: PackedString -> PackedString
tailPS = packString . tail . unpackPS

nullPS :: PackedString -> Bool
nullPS = null . unpackPS

When accompanied by a definition of the composition unpackPS . packString, this com-
pletely specifies the required behaviour of these functions — though one would hope for
more efficient implementations!

!Many Haskell compilers break this rule for prelude functions. Since this reduces portability, we recom-
mend that they provide a compiler option to force the use of a correct {but possibly slower) implementation
— as far as is possible.

74

2.7 How do libraries interact with other aspects of Haskell?

Although the Haskell report is silent on exactly how the components of a program are
gathered for compilation, we expect that the user should not have to do anything special
to specify the location of modules in the standard Haskell library. Simply mentioning a
library name in an import declaration ought to be sufficient to link the appropriate library
into the Haskell program.

Libraries may define derivable classes. The names of such classes must be explicitly imported
into the modules that define types which derive them. It is the responsibility of the compiler
to correctly expand a deriving clause involving such a class.

It is also possible that the compiler-generated code for a deriving clause may reference
entities defined in libraries. It it is not necessary for the programmer to import these
implicitly-referenced entities, although the compiler must arrange for them to be linked
into the resulting program.

3 An Overview of the Proposed Libraries

This section summarises those libraries which will be included in Haskell 1.3. (A complete
definition may be found in document [11].) We omit LibCharType which provides character
operations removed from Prelude, and LibArray, LibComplex and LibRatio which are just
old prelude modules turned into libraries.

3.1 Non-overloaded prelude functions

Functions such as elem use the Eq class to supply the == operation. There are situations
in which the operation defined by overloading is not appropriate. For example, one might
wish to use a case-insensitive comparison when operating on strings. It is straightforward
to define versions of these functions which are not overloaded (but are polymorphic) by
adding an extra argument which provides an explicit equality or comparison predicate. For
example, we have nubBy :: (a => a =-> Bool) -> [a] -> [a]. While it is trivial to
define overloaded functions in terms of non-overloaded ones, the reverse is not possible.

The prelude provides several functions which are overloaded with respect to Eq and Ord:
nub, elem, notElem, min, max, maximum, minimum and (\\). Rather than creating a module
containing a random assortment of such functions, we place the non-overloaded version in
the same module as the original definition. The overloaded version can be defined using the
new function; for example, nub can be defined by nub = nubBy (==).

3.2 Packed Strings
Haskell represents strings by lists of characters. While this interacts well with lazy evalua-

tion and allows many prelude functions (such as map and length) to be used on strings, typ-
ical Haskell implementations consume 20-40 bytes per character to represent such strings.

75

The module LibPackedString provides a new type PackedString which is evaluated more

strictly to allow a more compact representation (as low as 1 byte per character plus a small
constant overhead).

The retraction pair (unpackPS,packString) : PackedString « String is not quite an
isomorphism since packString completely evaluates its argument. These functions are used
to define PackedString versions of the prelude constructors [J and (:) and the prelude
functions head, tail, init, last, null, length, append, map, filter, foldl, foldr, take,
drop, splitAt, takeWhile, dropWhile, span, break, lines, words, reverse, concat, elem

and (!1!).
This module is based on the PackedString module distributed with GHC.

3.3 List Opérations

As one of the most heavily used data structures in Haskell, it is not surprising that the last
five years use has produced a host of useful new functions over lists.

LibSort

This module provides a stable sorting function sort :: Ord a => [a] -> [a].
(sortBy is also provided.)

LibDuplicates

This module provides functions for manipulating lists with duplicate values: group ::
Eq a => [a] -> [[al] and uniq :: Eq a => [a] -> [a] which group together
adjacent equal elements in a list and eliminate adjacent equal elements. (The function

LibSort.sort can be used to bring duplicates together.) (groupBy and uniqBy are
also provided.)

LibLength

This module provides functions such as lengthLe, lengthEq :: [a] -> Int ->
Bool to test the length of a list without evaluating the entire list.

LibScans

This module provides unidirectional and bidirectional generalisations of fold and
scan based on functions provided in HBC’s ListUtils module, GHC’s Utils module
and O’Donnell’s paper on bidirectional fold and scan [9].

LibSubsequences

This module provides functions to generate the list of all subsequences, prefixes, suf-
fixes or permutations of a list and to test whether one list is a subsequence, prefix,

suffix or permutation of another list. These are based on functions defined by Bird
and Wadler [2].

76

3.4 Collections

Lists are very heavily used in Haskell programs. Sadly, lists can be quite inefficient (in time)
for storing large collections of data and it is possible to do significantly better using data
structures based on binary trees or hash tables.

The modules LibBag, LibSet, LibFiniteMap and LibHashTable define types Bag, Set,
FiniteMap and HashTable, retraction pairs relating them to lists or association lists and
functions over these types (mostly based on prelude functions over lists and arrays).

Bag «a

The type Bag a is isomorphic to [a] but provides constant time appending and con-
catenation functions and logarithmic time head and last functions.

The retraction pair for bags (toList, fromList) : Bag @ < [a] forms an isomorphism.
That is

toList . fromlList = id

Set «
The type Set represents (ordered) collections with no duplicates.

The retraction pair for sets (toList,fromList) : Ord ¢ = Set a < [a] satisfies the
identity

toList . fromList = uniq . sort

FiniteMap a § and HashTable a 3

The types FiniteMap o § and HashTable ¢ [represent lookup tables with keys of type
a and elements of type 3. FiniteMaps behave like balanced binary trees (logarithmic
access time and insertion time) and HashTables behave like (functional) hash tables
(near-constant access time and linear insertion time).

The retraction pair for finite maps (toList,fromList): Ord o = FiniteMap a § «
[(a, B)] satisfies the identity

tolList . fromList = uniqBy eq . sortBy cmp
where

(x,.) ‘cmp® (y,.) =x<=y

(x,.) ‘eq’ (y,) =x==y

Hash tables require a new type class Hashable. The following laws are satisfied by the
retraction pair for hash tables (toList, fromList) : Hashable a => HashTablea § —

[(e,8)]

map fst xs ‘isPermutation0f‘ map fst (toList (fromList xs))
lookup xs = lookup (tolist (fromList xs))

77

All four modules provide functions corresponding to the prelude constructors [J and (:)
and of the prelude functions ++, \\, length, genericLength, map, partition, filter,
foldl and foldr. LibSet and LibBag also provide versions of elem and notElem; LibBag
provides versions of head, tail, init, last, (!!) and reverse; and LibFiniteMap and
LibHashTable provides versions of indices, elems, accum, (//), (!), amap and ixmap.
(All functions are defined using the retraction pairs.)

The module LibHash is provided to help support LibHashTable. It provides a new abstract
type Hash, a new type class Hashable defining a method hash :: Hashable a => a ->
Hash and instances for Haskell’s primitive types (e.g., Int, Integer). Instances of Hashable
may be derived.

Modules LibBag, LibSet and LibFiniteMap are based on modules distributed with GHC;
LibHash is loosely based on a module distributed with HBC (the type Hash is just Int in
the HBC version.)

3.5 Monads

Since their first use in pure functional programming [13}, monads have revolutionised the

way programmers perform input/output, update-in-place, parsing, exception handling and
many other tasks.

If constructor classes [6] are added to Haskell 1.3, it would be possible to define construc-
tor classes representing monads, monads with a zero element and monads with a choice
operator. Such classes could be defined in a library but are sufficiently important to jus-
tify their addition to the prelude. Instances would include lists, Maybe, Either, I0 and
Parser. There are a number of useful monadic functions which can be defined using these
operations. The current interface is based on monads used within GHC and on examples
distributed with Gofer.

3.6 Mutable Structures

Peyton Jones, Wadler and Launchbury {7, 8] describe how monads may be used to provide
mutable variables and mutable arrays without losing referential transparency.

The module LibMutable provides both mutable variables and mutable arrays. The major
unresolved question is whether the operations to create, read and write mutable structures
should be part of the I0 monad, part of a state thread monad or whether the I0 monad
should be an instance of state thread monads as in Peyton Jones and Launchbury’s elegant
lazy state threads paper [8]. The problem is that their approach requires the addition
of a new language construct runST with special type-checking rules. It is not yet clear
whether the extra power justifies complicating the language. This module is based on the
PreludeGlaST module distributed with GHC.

78

3.7 Printing and Parsing

The prelude provides the Text class for printing and parsing values. Derived methods have
the desirable property that read . show = id (for non-functions and ignoring strictness).
However, the output from show can be rather ugly and it is awkward to construct good
parsers using read.

The module LibPretty provides a new abstract type Pretty representing a pretty-printed
block of text and functions for combining values of type Pretty in various ways useful
when printing programs and data structures. The current interface is based on Hughes’
pretty-printing library as distributed with HBC and GHC.

The module LibParse provides a new abstract type Parser a f§ of backtracking recursive-
descent parsers which consume a token stream of type a and produces “parse trees” of type
B. The current interface is based on Hutton’s parsing library [5] as distributed with HBC.

3.8 Binary Files

The class Text provides a limited form of persistence: most built in and user-defined types
can be printed to text files and subsequently read back in. However, the process of con-
verting values to strings and using a backtracking lexer and parser to read them back in is
notoriously inefficient. Haskell 1.2 provided the Bin datatype and the Binary type class for
efficiently writing values to files in a more concise (implementation-specific) manner.

This feature of Haskell 1.2 was essential to some programs but rarely used and so is being
moved into a library. At the same time, the adoption of monadic I/O makes it possible to
provide operations to read and write values to a binary file directly — eliminating the need
to create an intermediate Bin value.

To ensure portability of generated files, the specification of this module should define the
precise external representation for each datatype in class Binary. Some care is required to
avoid overly restricting the possible range of certain datatypes such as Int and Float.

Instances of Binary may be derived. The current interface is based on the Native module
distributed with HBC with extensions based on the current Yale implementation.

3.9 Random Numbers and Splittable Supplies

While functional programming languages are valued because their results are deterministic
and easy to predict, many kinds of programs such as simulations and games need to appear
non-deterministic — they need a supply of random numbers.

The module LibRandom provides a new abstract type: RandomState together with a function
nextRandomState :: RandomState -> RandomState; and a new type class Random which
provides a method fromRandomState :: Random a => RandomState -> a. There are
also functions for initialising random states, and generating lists of random values and Text
and Binary instances for reading and writing random states to files.

79

Although the type RandomState is abstract, the definition will precisely specify the algo-

rithm used to generate random numbers to ensure consistent results across all implementa-
tions.

The current interface and semantics is loosely based on the random number operations in
Common Lisp.

The module LibSupply provides a new abstract type Supply « which represents a splittable
supply of values of type a. This module is included to support supplies of random numbers
but has also proved useful within compilers. The current interface is based on Augustsson,
Rittri and Synek’s splittable supply library [1] as distributed with HBC.

The price paid for an efficient splittable supply implementation is that programs using
the splittable supply module might produce different results when compiled with differ-
ent compilers, with different optimisation options or even after small semantics-preserving
changes to the program. In practice, this does not present any problems. For example, in

a type-checker, it is important to have an efficient supply of distinct type variables but it
is irrelevant where each type variable is used.

3.10 BitSets

Bitwise operations are useful for two purposes: 1) they provide fast, compact operations
on sets of small integers; and 2) they are useful in communicating with hardware devices,
network protocols, etc.

The module LibBitSet provides types Word8, Word16, Word32, Word64, Word128 and Word
(unbounded words) and a type class BitSet which provides the usual bit-manipulation
operations (including both arithmetic and logical shifting operations). The new types are
instances of Integral (and all superclasses); negative numbers are interpreted as though
they are represented in two’s-complement notation. The current interface is loosely based
on the Common Lisp logical operations [12] and the Word library distributed with HBC.

3.11 Future Work

There is a considerable amount of work ahead designing the exact interface to these modules,
defining the precise semantics of these operations and documenting the resulting modules.

We are also considering libraries to support matrix operations, regular expressions, Hughes’

lazy memo functions [4], Johnsson’s lazy arrays, the language independent arithmetic stan-
dard [10] and the X11 graphics protocol.

References

[1] L Augustsson, M Rittri, and D Synek. On generating unique names. Journal of
Functional Programming, 4(1):117-123, January 1994.

80

[2] RS Bird and PL Wadler. Introduction to Functional Programming. Prentice-Hall, 1988.

[3] AD Gordon and K Hammond. Monadic I/O in Haskell. In Proceedings of Haskell
Workshop, June 1995.

[4] John Hughes. Lazy memo-functions. In Functional Programming and Computer Ar-
chitecture, pages 129-146, September 1985.

[5] G Hutton. Higher-order functions for parsing. Journal of Functional Programming,
2(3):323-343, July 1992.

[6] MP Jones. A system of constructor classes: overloading and implicit higher-order
polymorphism. In Functional Programming and Computer Architecture, 1993.

[7] SL Peyton Jones and PL Wadler. Imperative functional programming. In Principles
of Programming Languages, pages 7T1-84. ACM, January 1993.

[8] J Launchbury and SL Peyton Jones. Lazy functional state threads. In Programming
Languages Design and Implementation, 1994.

[9] JT O’Donnell. Bidirectional fold and scan. In Draft Proceedings of Glasgow Functional

Programming Workshop, pages XX1 - XX6. Glasgow Functional Programming Group,
July 1993.

[10] M Payne, C Schaffert, and BA Wichmann. The language compatible arithmetic stan-
dard. ACM SIGPLAN Notices, 25(1):59-86, January 1990.

[11] AD Reid and JC Peterson. A proposal for the standard Haskell libraries. 1995. In
preparation for distribution at Haskell Workshop.

[12] GL Steele. Common Lisp — The Language. Digital Press, 2nd edition, 1994.

[13] PL Wadler. Comprehending monads. In Proc ACM Conference on Lisp and Functional
Programming, Nice. ACM, June 1990.

81

Adding Records to Haskell

John Peterson and Alastair Reid
Department of Computer Science, Yale University,
P.O. Box 208285, New Haven, CT 06520, USA.
Electronic mail: {peterson-john,reid-alastair}@cs.yale.edu

June 5, 1995

Abstract

The Haskell programming language has a very simple yet elegant view of data struc-
tures. Unfortunately, this minimalist approach to data structures, in particular record-
like structures, presents serious software engineering problems. We have implemented
an extension to standard Haskell which provides record-like structures in addition to
ordinary algebraic data types. OQur extension provides named fields in data structures,
default field values, field update functions, detection of uninitialized slots and mulitiple
inheritance. Qur major design goal was to supply as much functionality as possible
without changing any of the basic components of the Haskell language (in particular,
we avoided further complication of the type system). The purpose of this paper is not to
advocate this specific extension to Haskell, but to examine the basic engineering issues
associated with records; describe our experiences with the implementation and use of
one particular proposal; and consider alternative approaches (some of which have been
used in other languages).

1 Introduction

The Haskell language [2] includes only the most basic support for a fundamental program-
ming language feature: the record type. In the most general sense of the term, a record
simply groups a heterogeneous collection of objects into a single value. There are many
different manifestations of record-like features in programming languages, including tuples,
structures, and objects. While the algebraic data types found in Haskell have the necessary
functionality to build record data structures, Haskell lacks many desirable features found
in other languages for dealing with complex data objects.

This paper describes our implementation of record types in the Yale Haskell system. The
purpose of this experiment is not to advocate any specific implementation of records in
Haskell, but to fully explore one possible approach to this problem and to gain practical
experience with the problem of integrating records with the Haskell programming style.
After presenting our implementation, we compare our system of records to those found in
other languages and discuss alternatives to our design.

82

Before proceeding, we will clarify our terminology. We use the term record in only the most
general sense. The components of records are fields. Within the context of our specific
proposal, we use the terms structure and slot to denote our particular implementation of
records and fields (respectively).

The issues of concern here are not so much in the fundamental language semantics, but
instead are matters of engineering. From a software engineering standpoint, the record
structures provided by a programming language benefit from the following properties:

¢ Expandability. Adding a new field to a record should not require modification of
code which references old fields. It should be possible to new fields silently without
changing existing code.

¢ Reusability. A record should be able to include (inherit) other records; operations
which apply to the included records should also apply the including record.

o Efficiency. Basic record operations must be extremely efficient; there must be no
hidden performance costs.

¢ Privacy. The program must be able to hide the internal details of a record.

Along with these engineering issues, we have one further goal: to keep our system as much
in the spirit of standard Haskell as possible.

The basic features of our proposal are:

¢ The semantics are entirely defined via a translation to standard Haskell. No modifi-
cations are required in the Haskell type system.

o Slots may be accessed via pattern matching or by function application.
¢ Slots may be (functionally) updated.

o Default values may be provided for slots.

¢ Uninitialized slots can be detected by the programmer.

¢ Special syntax is used for creating, updating, coercing, etc. This avoids generating
new names for these operations (as is done in Common Lisp [6]).

o Explicit declarations are required for all record types. This avoids the efficiency and
type-inference problems associated with more general record types and produces more
accurate messages when type errors occur.

e Structures may be polymorphic.

¢ Multiple inheritance is allowed. Inheritance is implemented using Haskell’s type class
mechanism; structure operations and user-defined functions are overloaded to allow
them to apply to any structures defining appropriate fields. Coercion functions are
provided to move up and down the inheritance graph.

83

2 Data structuring in standard Haskell

Before presenting our proposal, we explore what can be done in standard Haskell. This both
illustrates the need for improvement and provides the basis for describing the semantics of
our proposal.

For example the following datatype which is used to represent named entities within the
Yale Haskell compiler.!

data Definition =

MkDet
String —-= name
String ~- module in which it is defined
String ~— unit in which it is defined
Bool == is it exported?
Bool -- is it a PreludeCore symbol?
Bool -- is it a Prelude symbol?
Bool -~ is it created by an interface?
Bool -- is it ‘‘made up’’ by the compiler?
(Maybe SrcLoc) -- where it was defined.

This datatype is hard to use reliably. There are several fields of the same type — the
type system is not able to detect simple errors such as accidentally swapping the fourth
and fifth fields. Such problems are very difficult to spot when fields are identified only by
their position with respect to a constructor. It is also hard to maintain: adding an extra
field to this definition requires changes to every use of the constructor MkDef (i.e. taking
Definitions apart in patterns and constructing Definitions in expressions.)

The usual solution to the problem of reliably handling many fields is to define “access
functions” for updating and selecting each field of the record. For this example, we must
define 18 different access functions — one to extract each slot and one to update each slot:

getName, getModule, getUnit :: Definition -> String

getName (MkDef nm _ _ _ _ _ _ _ _) =nm

getModule (MkDef _ mod _ _ _ _ _ _ _) = mod

getUnit (MkDef _ _ unit _ _ _ _ _ _) = unit

setName, setModule, setUnit :: String -> Definition -> Definition

setName nm (MkDef _ mod unit isEx isCore isPrel isIface isIntermal loc)
= (MkDef nm mod unit isEx isCore isPrel isIface isIntermal loc)
setModule mod (MkDef nm _ unit isEx isCore isPrel isIface isIntermal loc)
= (MkDef nm mod unit isEx isCore isPrel isIface isIntermal loc)
setUnit unit (MkDef nm mod _ isEx isCore isPrel isIface isIntermal loc)
= (MkDef nm mod unit isEx isCore isPrel isIface isIntermal loc)

!The Yale Haskell compiler is written in Lisp; this example is obtained by translating from Lisp to Haskell.
Similar examples occur in the Glasgow Haskell compiler — which ¢s written in Haskell.

84

Using these access functions instead of referencing the constructor MkDef directly results
in more readable code and simplifies the task of adding new fields to a record. However,

the reader will appreciate that creation of these access functions is a somewhat tedious and
error-prone task.

A further problem with this approach is that it is no longer possible to use pattern matching
to extract components of records. This makes programs more verbose.

3 Syntactic Support for Records

The core of our proposal is to provide special syntax for defining structure types, accessing
slots, and initializing structures. The semantics of our proposal is defined as a translation
into code like that given in the previous section.

The additions to Haskell syntax rules (appendix B of {2]) are as follows:

3.1 Structure declarations

topdecl — structure [~ | simple where { structbody | ; | } [deriving (tycises)]
simple — tycon tyvar; ...tyvary

structbody ~— structsigns [; valdefs]

structsigns — structsign; ;... ;structsign,

structsign — vars :: [contezt => | type

Using this syntax, the datatype and access functions in section 2 can be more concisely
defined by

structure “Definition where

name, moduleName, unit :: String
isExported, isCore, isPrelude :: Bool
fromInterface, isIntermallDef :: Bool

definedIn :: Maybe Sourceloc

(The “twiddle” is related to inheritance and is described in section 4.1.)

The selector functions have exactly the same name as the slot they extract; for example,
the following function prints the original name of a definition:

showDefName :: Definition -> ShowS
showDefName 4
= showString (moduleName d) . showChar ’.’ . showString (name d)

85

Translation: The declaration
structure ~S ¢;...t; where

Vy 10 ULy oo 53 VUm 10 Uy
vl = inity; ... ;) Uip = inil,
is equivalent to the type declaration and function declarations
data S ty...tp = MkS uy ... um
vy tr § ty.te <> uy
vy (MES 21 ... zp) = 21

Um 33 S t1...1 => uUn

Uy (MES 21 ... Tpu) = Zm
(The meaning of the default values (v;; = inity; ... ; v;n = inity,) is defined
below; the meaning of omitting the “twiddle” (~) is defined in section 4.1.)

Note: Although we define the semantics of our system by translation into standard Haskell,
the constructor M kS used in this translation is not made directly available to the program-
mer.

3.2 Pattern Matching

apat — (spat; , ..., spat,) (structure pattern, n > 1)
spat — wvar = pat

An alternative way of extracting slots is by pattern matching. Structure patterns consist
of a list of pairs of slot-names and patterns. For example, the function showDefName could
be written as:

showDefName :: Definition -> ShowS
showDefName (moduleName = m, name = nm)
= showString m . showChar ’.’ . showString nm

The order in which slot names are listed does not matter. Pattern matching proceeds left
to right as in all other patterns.

Translation: The expression case eg of (sl = py, ... sn = p,) => e; - >

¢’ , for slot names s1, ... sn, is equivalent to:
let { y =€ } in
case eg of { MkS z; ... 7} ->
case T, of { py => ... case zgp of { pp > e ; . >y} ...
-=>Yy

1}

where ¥y, z1 ...Zy are new variables and z, is the value of the slot named s.

- 86

3.3 Updates

aezp — (var=) (update section)
| Cupdy, ..., upd,) (update function, n > 1)
upd — var = exp

For each slot s :: £ of a structure S, the update section (s=) is a function of typet — § — S
which copies the structure updating the value of the slot s. The value to be placed in the
slot can be placed inside the parenthesis, as in (name = "foo"). More than one slot can
be updated at once, as in (name = ".", moduleName = "Prelude").

Translation: Given the structure declaration
structure "S5 t;...tr where

VY st UL ... 3 Upm 1D U
vl = nity; ... 3 Vi, = inid,
the notation (v; =) is equivalent to:
\x (MkS z1 ... 2 ... Tp) > (MES 27 ... T ... Tp))
and the notation (v;; = e;, ...vn = e,) is equivalent to:

(\ s> (wa=) e; (... Win=) €n 5 ...))

The order in which slot names are listed does not matter; but it is a static error to use the
same slot name more than once.

3.4 Structure Creation

There is no special syntax for structure creation. The structure name is used as a modified
data constructor: instead of being applied to the component values, this constructor applies

an update function to an initial value constructed from the defaults specified in the structure
declaration.

For example, the function mkCoreDef creates a PreludeCore definition. The list of slot
names and values is an update function as defined in the previous section and Definition
is a function which applies the update function to an “empty” structure in which each slot
is undefined (there are no default slot values declared in this example).

mkCoreDef :: String -> SourceLoc -> Definition
mkCoreDef nm src = Definition (
name = nm,
moduleName = "PreludeCore',
isExported = True,
isCore = True,
isPrelude = True,
fromInterface = False,
definedIn = src

)

87

The syntax for declaring structures allows default values to be specified for some of the slots.
A straightforward approach would require the default value of each slot to have the same
type as the slot. For example, one might add the following default values to the structure
declaration.

isExported = False
isCore = False
isPrelude = False
fromInterface = False
definedIn = Nothing

However, by making the default a function mapping the structure being defined onto a
slot value it becomes possible for default values to depend on the values of other slots —
particularly those of explicitly-initialized slots. For example, the values of the slots isCore
and isPrelude can be made to depend on the value of the moduleName slot.

isExported self = False

isCore (moduleName = mod) = mod == "PreludeCore"
isPrelude {(moduleName = mod) = take 7 mod == "Prelude"
fromInterface self = False

definedIn self = Nothing

The implementation of this style of default argument is somewhat subtle: we use a recursion
to allow explicitly initialized slots to override default values and to allow default values to
depend on other slots in the same structure.

Translation:
For a structure type constructor S, the occurrence of the type constructor S in an
expression is equivalent to the function
\itnit -> let s = init ((vy = init;y s, ..., v, = init, s) (MkS L...1)
in s)
where the default values for variables vy, ..., v, are intty, ..., init, (respectively).

It is a static error to provide more than one default value for a slot. Uninitialized slots with
no default are bound to error calls.

Strictness annotations in data type definitions cause problems with initialization: an unini-
tialized structure slot would immediately cause a program error. Our solution is that strict
slots must have a default value and that default value should have the same type as the
slot (rather than being a function whose argument is the structure being created). This
constant is used instead of L in the above translation.

88

3.5 Uninitialized Slots

Slots which have no default value may remain uninitialized by structure creation. While
accessing such slots results in a runtime error, it is sometimes useful to test whether a slot
is initialized without actually referencing its value. It is, of course, possible to avoid this by
adopting the convention that every slot must have a default value. On the other hand, by
allowing uninitialized slots to be detectable, a robust derived Text instance for structures
can simply skip over uninitialized slots instead of crashing when attempting to access such
a slot.

The changes to the translation are straightforward but tedious: the datatype
data S t;...tp = MES uy ... U,

is changed to

data S t;...tx = MEkS (Maybe u;) ... (Maybe up)

The definition of selector functions and update sections are modified to accommodate this
change

v; (MES zy ... (Just z;) ... Tp) = T;

(v; =) =\ x (MkS z7 ... 2y ... zp) => (S 21 ... (Just z) ... Zp)

and (in the absence of an explicit default) the default value of every slot is changed from L
to Nothing.

Translation: Given the structure declaration
structure ~S t;...t; where

Dy S UL see ; Um 1D Um
vi1 = oinily; ... 3 U = inil,
the notation (= v;) is equivalent to:
(\ (MES Ty ... 2T; ... :L’m) ->
case z; of { Just _ -> True; Nothing -> False })

This translation is rather inefficient — imposing an overhead on creation, selection and
updates. Fortunately, it is easy to detect undefined slots without an explicit Maybe datatype
in the representation. To produce meaningful error messages, each potentially undefined
slot is already associated with a particular error thunk. Instead of wrapping the slot value

up in the Maybe data type, the definedness check simply compares the slot value with the
associated error thunk using pointer equality.

4 Adding Inheritance

It is possible to extend this translation further to allow a structure to inherit slots from
other structures. For example, one might define variables which are just like definitions but

89

provide additional slots to store the type, signature, fixity, definition, etc of the variable.
We extend the syntax slightly to specify which structures slots are being inherited from.

topdecl — structure tycon,,... ,tycon, => [~] tycon where
{ structbody [;] } [deriving (tyclses)] (n>1)

For example, to define a type Variable which inherits slots from the type Definition, we
write:

structure Definition => Variable where
varType :: Signature
varSignature :: Maybe Signature
fixity :: Fixity
definition :: Expression

The major change required to make this work is that the functions to select slots and update
structures must be overloaded [9]. That is, instead of translating a structure definition into
just a datatype and a collection of slot selection and update functions, structure definitions
are translated into a type class with selection and update functions as methods, a new
datatype and an instance of the datatype for that class. We use the same name for the
type its corresponding class — this would normally be a syntax error since Haskell does not
allow types and classes to share names.

For example, the definition of the structure Definition must be changed to define a type
class (also called Definition) with methods

name, moduleName, unit :: Definition a => a -> String

(name=), (moduleName=), (unit=) :: Definition a => String -> a -> a

The old definition of the access functions is used to define an instance of the class Definition
at the type Definition.

Similarly, the definition of the type Variable is used to define a type class Variable, and
a data type Variable which is an instance of both Definition and Variable.

A structure may be either narrowed to a contained structure or widened to a containing
structure. Widening is accomplished by adding undefined slots to the value. For a structure
type S, the function (-> S) narrows a value from any type which includes S onto S and the
function (S ->) widens a value of type S into any type containing S. The types of these
operators are:

=> a ~> S
=> S -> a

(->8) ::
(s ->) ::

w wn

90

Translation:
instance S 5’ where

(> 8) (MkS" z0 ... zp) = MkS nqy ... n;

(§ =>) (MEkS z1 ... zm) = MES' wy ... w;
where n; is the 2 in the corresponding slot and w; is the corresponding z when
the slot is part of S or L otherwise.

For simplicity, widening does not invoke the defaulting mechanism to fill the new slots added
by widening.

The most difficult change is in pattern matching. Since we do not know the exact type of
the structure, the translation given in section 3.2 is no longer valid. The translation we
implemented is:

Translation: The expression case ey of (sl = py, ... sm = p,) ~> e; . =>
¢’ , for slot names sl, ... sn, is equivalent to:
let { z = e; y=¢€ } in
case sl yof {p -> ... casesnz of {p, >e; - =>y} ...
-y}
where z, ¥, 21 ...z are new variables and z, is the value of the slot named s.

This translation has the drawback that it may occasionally cause a space leak if any p;
is irrefutable. The problem is exactly that reported by Wadler [7]: slot extraction is only
performed when the value of the slot is actually required; not when the pattern matching
occurs. This can cause the entire structure to be retained when only one slot is required.

The following alternative translation would eliminate this space leak, but may make over-
loaded pattern matching more expensive. (This translation is for single inheritance. Ex-
tending it to handle muitiple inheritance is straightforward but tedious.)

Alternative translation: If g has type §' @ = a, and S’ has slots s, ... sn, the
expression case ey of (sl = py, ... sn = p,) => e; - => € , is equivalent

to:
let { z =e; y=¢€ } in
case (->5') z of { MkS’ z; ... T} =>
case T, of { py => ... case zgp of { p, > e ; - >y } .
- ">y

i3

where z, ¥, £y ...z are new variables and z, is the value of the slot named s.

4.1 Avoiding Inheritance

Inheritance is a powerful tool but its use presents two problems:

ol

1. Since inheritance is implemented with the class system, using inheritance involves the
same overhead that overloading functions entails. This overhead consists of both the
instances needed to define an operation over a set of data types and the extra level of
indirection needed to call overloaded functions. While the execution time overhead can
be eliminated using type signatures to eliminate overloading, this is very burdensome
for the programmer.

2. Inheritance also may prevent early detection of some errors. For example, given two

structures
structure S1 where a1, bi :: Int
structure S2 where a2, b2 :: Int

f (al=x,b2=y)=x+y

The definition of £ is almost certainly incorrect since its argument must contain slots
from two different structure types. However, this does not cause a type error since
a third structure may later be declared (perhaps in a separately-compiled module)
which includes both S1 and S2.

On the other hand, a type error does occur if we try to apply f to an argument of
type S1 (which is probably what the programmer intended to do.)

If 1 had not been overloaded, this error would have been caught when f was declared.
(Providing the type signature £ :: S1 -> Int would also have caught this error.)

We thus make inheritance optional: a structure declaration may indicate that the declared
structure will not be inherited by any other structure. This is accomplished using a ~ in
front of the structure name in the declaration:

structure S1 => “S2 where s :: Int

The = prevents S2 from being used as a class and allows any use of the slot s to precisely
determine the typing of an update or pattern.

4.2 Multiple Inheritance and Defaulting

The Haskell type class system allows a class to have multiple superclasses. Since structures
are translated into type classes, our translation naturally allows multiple inheritance: a
structure is allowed to inherit slots from any set of other structures.

In the type class system, defaults can only apply to methods directly associated with a class,
not those inherited from superclasses. This avoids ambiguity over which default to apply
when the same method is inherited via several routes (e.g. the standard class Integral
inherits Ord via both the Ix class and the Real class).

We have chosen to relax this rule for structures. Structure declarations may define default
methods for inherited slots. The following rule is used to avoid ambiguity:

92

If a structure inherits a slot s, it may either define a new default for s or use
the default associated with the first structure in the list of included structures
containing s.

4.3 The Polymorphic Inheritance Problem

The reader may have noticed that the syntax for structure declarations does not allow both
polymorphism and inheritance. This is to avoid the following limitation of Haskell’s type
system.

The declarations generated by:

structure S1 a where
sl :: a

structure S2 b where
s2 :: b

structure S1 a, S2 b =>S3 a b

would be:
data S1 a = MkS1 a
data S2 b = MkS2 b

data S3 a b =MkS3 a b

class S1 s where
s1 :: 3 a->a

class S2 s where
s2 :: 3b->Db

-~ instances for S1i, S2 omitted
instance S1 (S3 b) wvhere
s1 (MkS3 x _) = x

instance S2 (53 a) where
s2 (MkS3 _x) = x

This “class declaration” is not legal Haskell since the type variable s must be instantiated
with a type constructor rather than a type. This may appear to be legal using constructor
classes, but the instance declaration for S1 will still not work.

For now we simply prohibit the inheritance of polymorphic structures but allow polymorphic
structures and unrestricted inheritance of non-polymorphic structures. It remains to be seen
whether this is excessively restricting in real programs.

33

5 Alternatives and Related Work

Our system is an experiment, not a finished product. Having the experience of carrying
an implementation all the way through and using it on a number of real applications,
including the Yale debugger and a prototype GUI system, we can assess our design and
consider alternatives.

5.1 The Namespace Issue

Our placement of slot names into the value namespace is a significant difference from lan-
guages such as C, Pascal, or ML. Using a separate namespace for each structure in the
manner of C is not possible, however, because this depends on a bottom-up style of type
inference which determines which type of structure is involved before resolving field names.

In practice, we have found that placing selector functions in the value namespace makes it
almost essential to use long field names. For example, the structure Point defined by

structure “Point where x, y :: Int

introduces two top-level function names x and y which the programmer is likely to want to
use for other purposes. We adopted the convention of using the structure name as a prefix
for the field name. For example, we would normally choose slot names pointX and pointY
instead of x and y.

This problem could be reduced by providing special syntax for selector functions — avoiding
the need to place selector functions in the value namespace— but this would not completely
avoid the problem: all slot names would still be in the same namespace.

A more radical solution is used in ML which allows “labels” to be shared among different
records. These labels do not carry typings in the same way the slot names do. Instead,
they simply attach names to tuple components. Implementing records using shared labels
would require significant changes to the syntax and further complicate the type system.

5.2 Default values

In our experience, some sort of defaulting mechanism is essential. This allows new fields to
be inserted into a structure without changing all references to the associated comstructor.
Although not often used, the expressiveness of mutually recursive slot initialization can be
very useful and seems to be more in the Haskell spirit than restricting defaults values to
constants or imposing some sort of evaluation order on the default computation.

5.3 Uninitialized Slots

Though easy to implement, the ability to detect uninitialized structure slots is somewhat
dubious. To date, our only use of this feature has been to allow the derived Text instances
for structures to skip over uninitialized slots.

94

The need to detect uninitialized slots could be eliminated by making it impossible to leave
a slot uninitialized. This could be done by changing the syntax of structure creation to
require a list of slot names and values (rather than allowing any expression of the right
type). It would then be possible for the compiler to check that every slot had either a
default value or an explicitly provided value. A similar restriction is imposed in ML [3],
where it is required by the combination of strict semantics and type safety.

5.4 Pattern Matching

Pattern matching in Haskell lacks the extensibility of other language features. It would
certainly be better to add a general purpose mechanism flexible enough to define structure
pattern matching than to add structure pattern matching as a special case, as in our im-
plementation. Sadly, Wadler’s “views” {8, 1] would not be flexible enough to handle this
case.

In practice, we found that we didn’t use pattern matching very much, preferring to use
selector functions to extract slots at the place where they are needed rather than at the
head of a function. This may be caused by a number of factors: our familiarity with
this style of programming from other languages that support records; our use of long field
names (section 5.1); the fact that structure pattern matching is generally not connected
with control flow; or our use of structures in big, complicated programs that solve real
problems instead of in highly polished classroom examples.

5.5 Allowing Polymorphic Inheritance

There appears to be a simple extension to constructor classes which would allow polymor-
phic inheritance. The problem with constructor classes is that only those types which are
curried applications of a type constructor are available. Thus, for a type T a b, constructor
classes can make use of T, T a,and T a b as types. Expanding the implicit currying, these
types are \a b -> T a b, \b -> T a b, and T a b. Unfortunately, polymorphic inheri-
tance requires a type such as \a -> T a b. We conjecture that adding a limited lambda
to the type language is possible: this lambda is needed only to permute the arguments to
the type constructors.

5.6 Syntax Issues

Using similar syntax for update functions (which are functions) and structure patterns
(which match data values) is somewhat irregular. In hindsight, it would be possible to drop
the parenthesis in single update functions and to drop multiple update functions. Where
one currently writes update functions such as (moduleName = m, name = nm), one would
instead write (moduleName = m . name = nm).

Our use of special syntax such as (s=), (=s), (-> S) and (8 ->) is somewhat contorted.
An alternative would be to indulge in name mangling (deriving one name from another) as
in Common Lisp. (For example, the function setFoo would be used to alter the values of
slot foo.) However, no other Haskell feature uses name mangling so we hesitate to add this.

95

5.7 Record Types

An entirely different system can be constructed using labeled records and subtype infer-
ence [5, 4]. The advantage of such as system would be that structure declarations would
be unnecessary. While type systems have been proposed featuring subtyping based on ex-
tensible records, these have two disadvantages: these require a fundamental change to the
Haskell type system and it may be difficult to generate efficient record operations using
these systems.

5.8 Generalizing to Arbitrary Datatypes

The structures considered in this proposal are just syntactic sugar for tuples; but, Haskell’s
datatypes allow one to define a “sum of tuples”. It would be straightforward to adapt
the inheritance-free translation in section 3 to allow one to define field names for arbitrary
datatypes. For example, given the datatype:

data Expr = Lambda (arg :: Var) (body :: Expr)
| App (fun :: Expr) (arg :: Expr)
| var (v :: Var)

one could use pattern matching such as:
eval env (Lambda (arg = v, body = e))

eval env (App (fun = £, axrg = a))
eval env (Var (v = x))

\x. eval ((v,x):env) e
(eval env) (eval env a)
lookup env x

5.9 Object-Oriented Programming

The ability to inherit structure slots is a step toward a more object-oriented programming
paradigm. However, when we used our structure system in a GUI system in an object-
oriented style, a number of deficiencies became obvious.

First, the classes defined for structures contain only slot accessing functions. To add other
class methods (as with C++ virtual functions), we were forced to add an extra class for
each structure type. That is, for a structure S (which defines a class S), we added the
class S => S’ to hold methods associated with structures inheriting from S. This was very

unsatisfactory — it would be much nicer to be extend structure definitions to directly
include these methods.

Dynamic binding, which would allow methods (dictionaries) to be attached directly to data
values, is not available in Haskell without some sort of existential typing. This makes
non-homogeneous lists impossible in standard Haskell.

The coercion functions were very useful — these allow objects to be moved up or down the
class hierarchy so as to dispatch methods associated with other types.

A more general object-oriented extension to Haskell would eliminate the need for slot in-
heritance at the structure level. Provided any extra overhead could be eliminated by the

compiler, such an extension may be preferable to using the inheritance mechanism described
here.

5.10 Code Generation
We have found that three factors significantly affect the quality of the generated code:

1. Inlining selection and update functions eliminates a function call and allows further
optimizations to be performed. Inlining the initialization function avoids constructing
and destructuring many partial records.

2. Using pattern matching on function arguments produces code that is both more ef-
ficient and less likely to leak space than if selector functions are used. The reason is
simple: pattern matching is performed when the function is called whereas selection
functions are only executed when the selected value is evaluated. Exactly the same
difference occurs if programmers use pattern matching on lists instead of head and
tail.

3. Avoiding overloading (whether by shunning inheritance or by providing explicit type
signatures) eliminates dictionary lookups and allows selection and update functions
to be inlined.

Restricting ourselves to single inheritance would allow a more efficient implementation
of inheritance: inherited slots could be placed at the same offset from the start of a
structure as in their parents allowing exactly the same code sequence to be used for
selecting a slot — no matter what it’s type. This optimisation would eliminate the
need to pass dictionaries around; greatly improving performance.

By choosing the best options (inline structure operations, use pattern matching and avoid
overloading), we are able to generate exactly the same code as if no abstraction mechanisms
had been used.

6 Conclusions

Our experience of being able to name fields has been entirely positive — we feel that
it significantly improves the readability and maintainability of our programs. Having an
elegant notation for updates is also very useful. Programs using these features are easier to
maintain and the code is very readable.

The best way to deal with inheritance is not yet known. A more advanced object-oriented
extension to Haskell may provide the same capabilities we have implemented. Simplifying
to a single inheritance style would eliminate the performance problems introduced through
the use of the class system.

Much of the implementation baggage could be eliminated by removing non-constant defaults
and inheritance. This would make structure creation trivial: an update is applied to a
structure containing the constant defaults. No class or instance declarations would be
generated by structures; only data declarations. No support functions would be required
— all structure operations could be expanded inline. Such a stripped-down system would
address many, but not all, of the engineering issues described earlier. At a minimum, such
a system should be considered for Haskell 1.3.

97

Acknowledgments

We are grateful to Warren Burton, Mark Jones, and Randy Hudson for their comments on
an early design of this system. Sandra Loosemore and others in the Yale Haskell group also
provided valuable assistance.

References

(1] FW Burton and RD Cameron. Pattern matching with abstract data types. Journal of
Functional Programming, 3(2):171-190, April 1993.

[2] P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel, J Fairbairn, J Fasel, M Guz-
man, K Hammond, J Hughes, T Johnsson, R Kieburtz, RS Nikhil, W Partain, and

J Peterson. Report on the functional programming language Haskell, Version 1.2. ACM
SIGPLAN Notices, 27, May 1992.

[3] R Milner, M Tofte, and R Harper. The definition of Standard ML. MIT Press, 1990.

[4] Atsushi Ohori. A compilation method for ML-style polymorphic record calculi. In
Principles of Programming Languages, pages 154—165. ACM, January 1992.

[5] D Rémy. Typechecking records in a natural extension of ML. In Principles of Program-
ming Languages, pages 242-249. ACM, January 1989.

(6] GL Steele. Common Lisp — The Language. Digital Press, 2nd edition, 1994.

[7] PL Wadler. Fixing a space leak with a garbage collector. Software — Practice and
Ezperience, 17(9):595-608, 1987.

[8] PL Wadler. Views — a way for pattern matching to cohabit with data abstraction.
Technical Report 34, Programming Methodology Group, Chalmers University, Sweden,
March 1987.

[9] PL Wadler and S Blott. How to make ad-hoc polymorphism less ad hoc. In Principles
of Programming Languages. ACM, January 1989.

98

Haskell++: An Object-Oriented Extension of
Haskell

John Hughes and Jan Sparud,
Department of Computer Science,

Chalmers University,
Goteborg, SWEDEN.
{rjmh,sparud}@cs.chalmers.se

June 2, 1995

1 Introduction

Lazy functional languages such as Haskell[Hud92] provide excellent support for
writing re-useable code. Polymorphism, higher-order functions, and lazy evalu-
ation are all key contributing features:

¢ instead of writing many sort functions at different types, we re-use one;

o instead of writing many functions which recurse over lists, we capture
common recursion patterns as higher-order functions map, foldr and so
on, and just re-use them:;

¢ instead of writing many loops that iterate n times, we write loops produc-
ing infinite lists and re-use take n to count the iterations.

This re-useability is reflected, for example, in the very heavy use that Haskell
programs make of functions from the standard prelude. Indeed, we have argued
elsewhere[Hug89] that these features are largely responsible for the improved
productivity that functional programming offers.

Haskell’s overloading system [WB89] also contributes to code re-useability.
For example, most numeric functions in Haskell programs can be re-used with
any implementation of numbers. Although in this case overloading can be re-
garded as syntactic sugar for parameterising numeric functions on the imple-
mentations of the arithmetic operations, the sugar is important because it makes
re-useable code easy to write. Most programmers would probably regard pass-
ing the operations explicitly as unacceptably clumsy, and therefore wouldn’t do
it. The result: less re-useable code.

29

However, there is a form of re-use which Haskell does not support. Suppose
we define a type T which is an instance of class C, and now we want to define
a new type T which contains a T and some additional components. Suppose
further we want to make T” an instance of the same class. It is quite likely that
the new components will only be significant for some of the class operations,
and we would therefore like to write an instance declaration for 7" where we
only define these operations explicitly, and re-use 7”s definitions for the others.
Sadly this is impossible: instance declarations in Haskell must define all of the
methods in the class. 7" cannot inherit method definitions from 7.

This kind of re-use is of course supported by object-oriented languages. Al-
though the object-oriented languages used in practice are imperative, there is
no shortage of functional variants in the theoretical literature — see for exam-
ple [jfp94]. But these variants require relatively powerful and complicated type
systems. For example, Pierce and Turner [PT94] show how an object-oriented
language can be simply translated into F¥, that is A-calculus with higher-order
polymorphism and subtyping. -

Such a translation could be used directly to implement a functional object-
oriented language, given a compiler for the target language, but unfortunately
good compilers for F¥ are in short supply. In this paper we show how to
translate an object-oriented language into Haskell instead. Our translation is
rather similar to Pierce and Turner’s, but where they use subtyping to allow
an inherited method to be applied at different types, we use Haskell’s overload-
ing with automatic generation of suitable instances. We have implemented a
simple pre-processor which translates an object-oriented extension of Haskell,
‘Haskell++’, into vanilla Haskell which can then be compiled with any of the
existing compilers. We believe that, like Haskell’s class system, our syntactic
sugar can significantly improve code reuseability in practice.

2 An Introduction to Haskell4+

We begin by giving an informal presentation of Haskell++, and showing how
some well-known object-oriented examples can be programmed.

2.1 Object Classes and Instances

Haskell4++ extends Haskell by providing a new kind of class, whose methods
may be inherited from one instance to another. These classes are defined by an
object class declaration. For example, let us declare an object class of points,
with methods for extracting the coordinates, moving the point, and showing the
point.

1Haskell's default methods are not useful here: we want to re-use T’s methods, not some
general class-wide method.

100

object class Point where

z :: Int

Y 2 Int

myv : Int— Int - self
sh 1 String

All the methods of an object class must be applied to an object of an appropriate
type, and the type of this object is always called self. Since this first parameter
must always be present, it is not given explicitly in the object class definition.
The type of the mv method declared above, for example, is actually

muv :: Point self = self - Int — Int — self

Moreover, since the type of the object operated on is always called self, there is
no need for a type variable in the object class line.

It may seem a little odd to treat the first parameter of each method specially.
One unfortunate consequence is that we cannot define overloaded methods to
create objects in the first place. We are forced to define a different object
creation function for each object type, and these functions cannot be inherited.
But on the other hand, it is a little unclear what inheriting such a method would
mean, and the restriction is shared with other object oriented languages such
as Eiffel [Mey88]. An advantage is that we can never suffer from ambiguous
overloading. Our implementation of inheritance depends on the first parameter
having type self, as we will explain below. To permit the user to write ‘self =’ in
each method type declaration, and then reject anything else as an error, would
be perverse.

To get any further we need a type which can be made an instance of this
class. Type definitions are as in Haskell, for example

data VanillaPoint = P Int Int

Now we can make VanillaPoint an instance of class Point by making an
object instance declaration. Just as the first parameter of each method was
implicit in the object class definition, so it is implicit in the object instance
definition. But in order to refer to the components of the object, we give a
pattern that it must match in the declaration header. Within the method
definitions we can refer to the variables bound in this pattern.

object instance Point (P z¢ yo :: VanillaPoint) where
T =2g
Y=Y
mvz' y =self (P2’ ¢)
sh = show (zq, yo)

The occurrence of selfin the mv method requires explanation. Remember that
these methods may be inherited by other instance declarations. That means
that the mv method defined here may very well be applied to types other than

101

VanillaPoint! In other words, even though we are defining the VanillaPoint
instance here, the type we called self above need not be VanillaPoint. To define
muv by

mvz'y =Pz y

would therefore be a type error: the result is of type VanillaPoint but should be
of type self. In order to construct values of the right type, Haskell++ provides
a function, also called self, which can be used only in method definitions and
whose type in this case is

self :: VanillaPoint — self

Every type which inherits from Van:llaPoint will contain a VanillaPoint compo-
nent. The self function builds a copy of the object that the method it is used in
is applied to, in which the VanillaPoint component is replaced by its argument.
It provides a mechanism for Haskell+-+ methods to to invoke other methods
in the same object, and to construct modified versions of the object they are
applied to.

2.2 Inheritance

Now suppose we want to define a type of points which also carry a colour. We
define

data Colour = Red| Yellow| Blue deriving Texzt
data ColourPoint = CP Colour VanillaPoint

Let us make ColourPoint an instance of class Point. The only method affected
by the colour is sh: we want to show the colour too. We would like just to
inherit the other methods from VanillaPoint. To do so, we define

object instance Point {CP ¢ p :: ColourPoint)
inheriting z,y, mvfrom p where
sh = super.sh++", " ++show ¢

Now when mu, for example, is applied to a ColourPoint it will just move the
VanillaPoint component, leaving the Colour unchanged. For example,

my 12 (CP Red (P 00)) = CP Red (P 12)

The mv method inherited from VanillaPoint rebuilds a ColourPoint by applying
the self function, which in this case is (CP Red).

Even when defining methods explicitly, we can refer to the inherited methods
under names beginning with super.. For example, here we have defined the sh
method for ColourPoints in terms of the inherited sh method for VanillaPoints:

sh (CP Red (P 12)) = “(1,2), Red"

102

2.3 Virtual Methods

Inheritance behaves rather subtly when one object method is defined in terms
of another. As an example, suppose we define a new class UpperPoint, whose
objects can be shown in upper case. We shall provide two alternative methods
for doing so, so we declare

object class Point = UpperPoint where
shU = String
shU : String

Here we require that instances of UpperPoint are also instances of Point.
Now let us make VanillaPoint an instance of this class:

object instance UpperPoint (p :: VanillaPoint) where
shU = map toUpper (sh (self p))
shU' = map toUpper (sh p)

Of course, these methods are defined in terms of sh.
We can inherit these definitions for ColourPoints:

object instance UpperPoint (CP ¢ p :: ColourPoint)
inheriting shU, shU from p

But ColourPoints have a different sh method from Points! The question is, do
shU and shU' ‘see’ the ColourPoint sh method, even though they are inherited
from VanillaPoint? In object-oriented languages the answer is ‘yes’, and indeed,
classes often contain so-called virtual methods, which are left undefined at the
‘vanilla’ instance, and are intended to be overridden at every inheriting type.

In Haskell++ the behaviour of shU and shU is different. When shU is
applied to a ColourPoint, it uses the self function to reconstruct a ColourPoint
and applies sh to that. It therefore ‘sees’ the new sk method:

shU (CP Red (P 12)) = “(1,2), RED"

On the other hand, shU' applies sh directly to a VanillaPoint. It does not see
the new method therefore:

shU' (CP Red (P 12)) = “(1,2)"

This difference in behaviour helps explain why we need super.. Looking back
at the definition of sh for ColourPoints, the reader may have wondered why we
wrote

sh = super_sh++", " +H-show ¢
instead of

sh=shp++", " +Hshowe

103

Why do we need special syntax to call an inherited method, instead of just
applying the method to the component we inherit from?

In this case the two definitions are actually equivalent, because the sh method
for VanillaPoints does not use any other object methods. But suppose sh were
defined in terms of the z and y methods, instead of the zo and ¥ components.
These methods might be overriden at other types — for example, we might
define a type XAzisPoint, inheriting from ColourPoint, whose y method always
returns §. Does the sh method for XAzisPoints, inherited from ColourPoints,
see the new y method or not? With the definition in terms of super_sh, the
answer is ‘yes’: the sh method inherited from VanillaPoints sees the modified
y method. But with the definition in terms of sh p the answer is ‘no’: here we
simply apply sh to a VanillaPoint, and all other information is lost.

2.4 Multiple Inheritance

It is straightforward for a type in Haskell++ to be an instance of several object
classes, and to inherit from more than one component. For example, let us
define a class of coloured objects:

object class Coloured where
colour iz Colour
setColour :: Colour — self

The simplest instance is just the type Colour:

object instance Coloured (¢ :: Colour) where
colour=c¢
setColour ¢’ = self ¢/

Now it is easy to make ColourPoints into Coloured objects, by inheriting from
the Colour component:

object instance Coloured (CP ¢ p :: ColourPoint)
inheriting colour, setColour from ¢

ColourPoints now inherit in two different ways.

This is actually only a limited form of multiple inheritance, because we
inherit the operations of each class quite independently, in separate instance
declarations. We can’t, for example, define a sh method for ColourPoints which
uses both the inherited sh method from VanillaPoint and the inherited colour
method from Colour.

2.5 Dynamic Binding

A very useful aspect of object-oriented languages is so-called dynamic binding
of methods, which allows the overloading implicit in a method application to

104

be resolved at run-time. For example, one may make a list containing both
VanillaPoints and ColourPoints, and indeed any other instance of the Point
class, and then map the sh method over the list. Thanks to dynamic binding,
the appropriate sh method is invoked for each element.

In Haskell, and also Haskell++, one cannot even build such a list because
the elements have different types. Pierce and Turner overcome this problem by
concealing the representation type of Point objects using an existential type, so
that every kind of point actually has the same type. Laufer and Odersky have
shown how existential types can be added smoothly to ML [Lau92, LO92] and
Haskell [Ldu94], and how the resulting extension supports dynamic binding.
Existential types are not yet a part of standard Haskell, but Augustsson has
implemented them in hbec.

With Laufer’s extension, we can define a type

data DynamicPoint = Point p = DP p

The DP constructor can be applied to any type p in class Point, but the type
of the result does not depend on p! So if vp is a VanillaPoint, and c¢p is a
" ColourPoint, then we can form both DP vp and DP cp, and in both cases the
result is of type DynamicPoint. We can therefore place both values in the same
list. Of course, when we use a DynamicPoint, all we know about the component
is that it is in class Point, and so the only operations we may apply to it are
the corresponding class operations. When we do so, the appropriate instance is
selected dynamically, implementing dynamic binding.

This extension is quite independent of Haskell4++, but if we are using the
preprocessor with a compiler supporting existential types, then we can conve-
niently make DynamicPoint an instance of class Point using inheritance:

object instance Point (DP p :: DynamicPoint)
inheriting =z, y, mv, sh from p

3 Translating Haskell++ to Haskell

The fundamental problem in translating Haskell++ to Haskell is the implemen-
tation of inheritance. Qur approach is as follows: any object which inherits
methods from, say, VanillaPoint, must first be decomposed into a component of
type VanillaPoint, and a function which rebuilds the rest of the object from that
component (that is, self). So method bodies in Haskell++ actually have two
hidden parameters: the self function and the component inherited from. Object
instance declarations are translated into Haskell instance declarations just by
adding these two parameters to every method. The ‘object pattern’ given in an
object instance declaration is of course used to match the object parameter.
For example, the object instance declaration for VanillaPoints

105

object instance Point (P zq yo :: VanillaPoint) where
T =2ZIy
Y=%
my z' i = self (P z' i)

sh = show (zq, yo)

is translated into the Haskell instance declaration

instance Point VanillaPoint where
zBody self (P zo yo) = zo
yBody self (P zg ya) = ¥o
mvBody self (P zo yo) 2’ ¥ = self (P 2’ i)
shBody self (P z¢ yo) = show (2, yo)

Notice that the operations in the generated class are actually ‘method bodies’,
not the methods themselves.

Correspondingly, object class declarations are translated by renaming the
methods and adding the two hidden parameters to the type of each method.
For example,

object class Point where

z = Int

Y i Int

mv :: Int — Int — self
sh = String

is translated into

class Point obj where
zBody :: Point self = (obj — self) — obj — Int
yBody :: Point self = (obj — self) — obj — Int
mvBody :: Point self = (obj — self) = obj — Int — Int — self
shBody :: Point self = (obj — selfy — obj -+ String

Notice that the type parameter of the class is not the type self, it is a new
type variable obj representing the type of the ‘object pattern’ in an instance
declaration. When we define a particular instance, it is of course this type that
we fix — but every instance definition must still be polymorphic in the type
self. A little care is needed here to translate type contexts correctly, both in the
types of individual methods and in the class header, but we leave the details to
the reader.

The object methods themselves are defined by using the trivial decomposi-
tion of an object into itself and the identity function:

z obj = zBody id obj

y obj = yBody id obj
mv obj = mvBody id obj
sh obj = shBody id obj

106

These definitions are generated when the object class declaration is processed.
Inheriting a method is equivalent to defining it to be equal to the corre-
sponding super. method, so for example

object instance Point (CP ¢ p :: ColourPoint)
inheriting z,y, mv from p where
sh = super_sh ++", " +H-show ¢

Is equivalent to

object instance Point (CP ¢ p :: ColourPoint)
inheriting from p where
T = super.z
y = super.y
My = super-mv
sh = super_sh ++", " ++show ¢

So it only remains to explain the translation of super. methods. They can
only be used within the scope of self and the object pattern. We can therefore
translate an occurrence of supér.mv, for example, into an application of muvBody
to the object component we’re inheriting from, and a suitably extended self
function. In this example, self maps ColourPoints to the selftype, and we must
pass the VanillaPoint mv method a function from VanillaPoints to this type.
We can construct it as selfo(Ap — (CP c p)), and in general the appropriate self
function is constructed similarly by composing the outer self with a A-expression
constructed from the object pattern and the name of the component we are
inheriting from. So the generated definition for the ColourPoint mv method is

mvBody self (CP ¢ p) = mvBody (selfo (A\p — (CP ¢ p))) p

and similarly for the other methods?.

4 A Larger Example

To test the object-oriented features gained by combining the Haskell class system
and existential types [Lau94] we had already written a simple drawing program
in an object-oriented style. We have since rewritten the program in Haskell++.

In the Haskell version we defined a class for graphical objects with methods
to draw them, move them, get information about them etc.

2Note that self rebuilds the structure of the object above the component that has changed;
as always in a functional language, modifying a part of a structure incurs a certain cost.
Analyses to detect single-threading could potentially be used here to transform self into a
destructive update.

107

class Object a where

origin :: a— Point

newOrigin :: a— Point - a

move * a— Point - a

draw i a — [DrawCommand)

To introduce a new graphical object type, we define a Haskell datatype for
it and then make the type an instance of the graphical object class. One benefit
of this approach is that when extending the program with a new object type,
all changes are made in one place. This is really a consequence of the object
oriented methodology used. On the other hand, if we want to extend the class
with a new method, then every instance declaration must be modified — and
they may be spread over several different files.

In our simple program we defined object types for points, lines, rectangles,
and circles. Here are the instance declarations for lines and rectangles.

data Line = Line Point Point
instance Object Line where
origin (Line py .)
newQrigin (Line . p2) p
move (Line py p2) d
draw |

P

Line p p»

Line (move p, d) (move pa d)
[DrawLine I

data Rect = Rect Line

instance Object Rect where
origin (Rect [)
newOrigin (Rect 1) p
move (Rect l) d
draw !

origin |

Rect {newOrigin | p)
Rect (move | d)
[DrawRectangle 1}

([T

{Rectangles are represented by their diagonal).

From these declarations we can see a drawback of the approach: it is clumsy
to re-use properties of one instance of the graphical object types in another.
For example, rectangles and lines have a common property in that they are
characterised by two corner points. If we define a move function for lines, we
would like to be able to use that function also when moving rectangles. To do
this we must explicitly define a function in the rectangle instance that uses the
move function from the line instance.

In order to manipulate objects of different graphical types together, we also
defined an existential type and made it an instance of the graphical object class
{see 2.5). The instance declaration is straightforward but boring to write; every
class method is defined in terms of the corresponding method for the contained
‘object’. ‘

108

data O = (Object obj} = O obj
instance Object O where
origin (O obj)
newOrigin (O obj) p
move (O obj) d
draw (O obj)

origin obj

O (newOrigin obj p)
O (move obj d)
draw obj

Values of the different graphical object types were then embedded into this
existential type so that they, e.g., could be put into a list. For example,

pr=Point00
p2 = Point 100 200
p3 = Point 50 100

objects =[O ps, O (Line p1 p2), O (Rect (Line ps p3))]

One can now map a function over all objects in the list. Of course, the only
interesting functions to use here are the class methods, since other functions
cannot do anything with the values in the existential type. For example,

newObjects = [move obj (Point 30 50) | obj + objects]
drawing = concat (map draw newQObjects)

Thanks to dynamic binding, the move and draw methods used depend on the
actual type of the object contained in each existential value.

After rewriting the program using Haskell++, the definition of the graphical
object class looks like:

object class Object where

origin = Point

newQOrigin . Point — self
move 2 Point — self
draw i [DrawCommand)

We can now exploit inheritance to reuse method definitions in several in-
stances. In our case the rectangle instance can inherit the origin, newOrigin,
and the move functions from its line component (and lines can inherit from their
first point).

109

data Line = Line Point Point

object instance Object (Line py ps :: Line)
inheriting origin, newOrigin from p; where

move d = self (Line (move py d) (move p2 d))

draw = [DrawlLine (Line p; p»)]

data Rect = Rect Line

object instance Object (Rect | :: Rect)
inheriting origin, newOrigin, move from ! where
draw = [DrawRectangle [}

We derive a number of benefits from using Haskell++4. When we define a
new object type that is very similar to an existing object type, it is easy to
inherit most methods and redefine the few ones that need to be changed, saving
programming effort. Moreover, if the type of a class method is changed, then
the method definitions have to be changed in every instance when using plain
Haskell. But in Haskell++ no changes are necessary in those instances which
inherited the method — only in instances where it is really redefined. Since less
needs to be written, the risk of errors is also reduced.

We exploited Haskell++’s virtual methods to define a create operation, that
uses mouse dragging to place a new shape on the canvas. The create method is
defined in the Line instance and inherited by every descendant, but makes use
of the draw method that is redefined in each instance.

The Haskell++ version uses an existential graphical object type in just the
same way as the Haskell one, but the corresponding instance declaration be-
comes very simple: it just inherits everything!

data O = {Object 0bj) = O obj
object instance Object (O obj :: O)
inheriting origin, newOrigin, move, draw, ... from obj

In this example in particular, it is somewhat inconvenient to have to list all the
methods one wants to inherit in an object instance. It would be better if all
methods that are not explicitly redefined in an object instance declaration could
be inherited automatically.

The graphical objects module in our example program defines one object
class with 13 methods. There are five instances, in which 23 methods are defined
explicitly, 32 are inherited (and ten are virtual). The number of source lines
decreased from 160 to 30 when moving from Haskell to Haskell++ — a reduction
of over 40%.

Of course, these figures very much depend on the application. An important
point is that the lines that we do not need to write anymore are very ‘mechani-
cal’: they are boring to write and prone to errors, and labour intensive to change
should that be necessary.

5 Related Work
5.1 Haskell Classes

Haskell classes already provide overloading, which is one aspect of object orien-
tation. But Haskell classes do not support any form of inheritance: the method
definitions in one instance cannot be inherited by another. Haskell4++ object
classes differ in providing inheritance. On the other hand, method types are
restricted to the form self — 7, and within method definitions selfis an abstract
type. That is, the only way to manipulate values of type self (except the first
parameter) is with the methods of the class, even within method definitions. As
a result object classes only support so called ‘weak binary methods’, a restriction
which does not apply to Haskell classes.

5.2 Laufer and Odersky’s Existential Types

We have already described Laufer and Odersky’s addition of existential types
to Haskell briefly above (section 2.5). Laufer has discussed its application to
object-oriented programming, including the points and colour points example,
in [Laug4]. By ‘wrapping’ objects of different types, such as points and colour
points, in a value of existential type, Laufer can for example form heterogenous
lists, and apply methods to the list elements with the right implementation
being selected dynamically. We borrow this technique in section 2.5.

However, since they do not extend Haskell’s class mechanism, Laufer and
Odersky must still define every instance method explicitly: there is no automatic
inheritance. Furthermore, they do not provide virtual methods: there is no way
for a method defined on points to use a method defined on colour points.

5.3 Pierce and Turner’s Translation

Pierce and Turner describe a translation from a simple object-oriented language
into system F¥, with an implementation of inheritance strongly reminiscent of
ours [PT94]. But whereas we inherit from obj to self by passing the inherited
method bodies an obj and a function obj — self, Pierce and Turner pass it three
parameters with types

o self,
o self — oby,
o self = obj — self

namely the original object, a function to extract the component we are inher-
iting from, and a function to replace this component. In effect, we pass the
applications of these two functions to the original object, rather than passing
the object and functions separately. Pierce and Turner’s idea is clearly more

111

general, but we are unable to adopt it because in our framework no such func-
tions need ezist!

The problem is caused by existential types. Recall the type of dynamic
points

data DynamicPoint = Pointp = DP p

which inherits all its methods from p. Our implementation of inheritance defines
DynamicPoint methods by pattern matching on (DP p) and invoking the cor-
responding method on p. The result is always of a type which does not involve
p, and so the definition is well-typed. But using Pierce and Turner’s idea, we
would need to construct a function with type DynamicPoint — p, which cannot
be done because the existentially quantified type p escapes from its scope.

Pierce and Turner represent all object types as existential types, whereas we
leave it to the Haskell++ programmer to choose whether to use existential types
or not. This probably explains our difficulty in the previous paragraph. Pierce
and Turner’s goal is to translate an object-oriented language into a functional
one, while ours is to eztend an existing language. To put it another way, we are
very concerned that our translation should be the identity in almost all cases!
Pierce and Turner need have no such concern. In particular, we have chosen to
give types exactly the same meaning in Haskell++ as in Haskell, and therefore
eschewed hidden existentials.

A minor difference between their translation and ours is that they use sub-
typing to allow inherited methods to be applied at many different types, while
we use Haskell’s overloading mechanism. As a consequence we are obliged to
generate suitable instance declarations for inherited methods automatically.

6 Conclusions

Haskell++ extends Haskell with object classes, whose instances may inherit
methods from one another. It is a rather minimal extension of Haskell: there
are no new ‘object types’ or ‘object expressions’, for example. The only new
features are object class and instance declarations.

Consequently the Haskell++ programmer must define object types using
the existing Haskell type definition mechanism. Some may regard this as ‘hair
shirt’ object-oriented programming. We prefer to say the new features are well
integrated with the old — any Haskell type may be declared to be an instance
of an object class.

The translation of Haskell++ to Haskell is straightforward. But the transla-
tions are sufficiently clumsy that few programmers would write them by hand.
Therefore we believe that our ‘syntactic sugar’ leads to a real improvement in
code reusability in practice.

We have tested Haskell++ in a non-trivial example, a simple object-oriented
drawing program. The results show a significant improvement in code reuse

112

compared to using existential types alone.

Our translator keeps no context information and therefore needs all inherited
methods to be named explicitly, which is a little unusual for an object-oriented
language. This can become tedious, especially when a new method is added to
an object class and all instance declarations have to be changed. An easy exten-
sion would automatically inherit all methods which are not explicitly defined.

Initial experience of Haskell++ is encouraging, but much more work is re-
quired to establish whether a combination of object-oriented and functional
programming is truly valuable in practice.

A prototype translator is available from the authors.

References

[Hud92] Paul Hudak et al. Report on the Programming Language Haskell: A
Non-Strict, Purely Functional Language, March 1992. Version 1.2. Also
in Sigplan Notices, May 1992.

[Hug89] J. Hughes. Why Functional Programming Matters. Computer Journal,
32(2), 1989.

[ifp94] Special issue on type systems for object-oriented programming. Journal
of Functional Programming, 4(2), April 1994.

[Lau92] Konstantin Laufer. Polymorphic Type Inference and Abstract Data
Types. PhD thesis, Department of Computer Science, New York Uni-
versity, New York City, USA, 1992.

[L3u94] Konstantin Laufer. Combining Type Classes and Existential Types.
In Proc. Latin American Informatics Conference (PANEL), Mexico,
September 1994. ITESM-SEM.

[LO92] Konstantin Laufer and Martin Odersky. An Extension of ML with
First-Class Abstract Types. In Proc. Workshop on ML and its Appli-
cations, San Francisco, June 1992. ACM SIGPLAN.

[Mey88] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall,
1988.

[PT94] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foun-

dations for object-oriented programming. Journal of Functional Pro-
gramming, 4(2):207-248, April 1994.

[WB89] P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc.
In Proceedings 1989 Symposium Principles of Programming Languages,
pages 60-76, Austin, Texas, 1989.

113

A The Syntax of Haskell++

The syntax of Haskell is extended as follows:

topdecl -

l
objcontert —
l
objcbody —
-—)

objsign
method -

object class [objcontezt =] tycls [where {objcbody [;]}]
object instance [contest =] tycls (pat :: inst)

[inheriting vary, ..., var, from var]
(where {method,;...; method, [;]}]
tycls

(tycls,, ..., tycls,)

objsign,; . ..; objsign,

var :: [contezt =] type

var apat, ...apat, = ezp [where {decis [;]}]

Non-terminals which are left undefined here are defined in the Haskell report[Hud92].

114

From Hindley-Milner Types to First-Class Structures

Mark P. Jones
Department of Computer Science, University of Nottingham,
University Park, Nottingham NG7 2RD, England.
mpj@cs.nott.ac.uk

Abstract

We describe extensions of the Hindley-Milner type system to support higher-order poly-
morphism and first-class structures with polymorphic components. The combination of
these features results in a ‘core language’ that rivals the expressiveness of the Standard ML
module system in some respects and exceeds it in others.

1 Introduction

The Hindley-Milner type system [13, 28, 8], hereafter referred to as HM, represents a significant
and highly influential step in the design and development of programming language type systems.
The main reason for this is that it combines the following features in a single framework:

e Type security: soundness results guarantee that well-typed programs cannot ‘go wrong’.

o Flexibility: polymorphism allows the use and definition of functions that behave uniformly
over all types.

o Type inference: the existence of principal types, and algorithms to compute them, provides
a direct way to identify well-typed terms without the use of type annotations.

Note that it is this combination, rather than the individual features themselves, that make HM
particularly interesting. For example, there are many different type systems supporting poly-
morphism of one form or another, while soundness is usually regarded as an essential prerequisite
in the design of any type system. HM is also quite attractive from the perspective of language
implementors:

e The type inference algorithm is easy to implement and behaves well in practice.

e Polymorphism is easy to implement, packaging function arguments as boxed values—a
uniform representation that is independent of the type of values involved. One of the main
attractions of this approach is the ease with which it permits true separate compilation.

As a result, HM has been used as a basis for several widely used functional languages including
Standard ML (SML) [29] and Haskell [14].
We should also recognize that HM has some significant limitations, including:
e Polymorphism is restricted to the second-order case, i.e. the form of polymorphism used
in the polymorphic A-calculus [38], also known as System F {9, 10]. Higher-order poly-

morphism of the form provided in F,,, allowing the specification of functions that behave
uniformly over all type constructors is not supported.

135

o The price that we pay for the convenience of type inference is the inability to define or use
functions with polymorphic arguments. By contrast, arguments with polymorphic type
can be used in system F and F,.

Despite these limitations, and thanks to the use of polymorphism and higher-order functions,
HM does permit a limited form of abstraction. For example, the definition of a polymorphic
sort procedure may be parameterized by a suitable comparison function. But the need for
mechanisms to support large-scale, modular programming have prompted the development of
more complex systems, including HM as a ‘core’. The best known example of this is the SML
module system which has a precise formal definition {29] and has proved to be very useful
in practice [4]. Unfortunately, such systems can be quite complicated and may not be fully
integrated with the core language. For example, type-theoretic treatments of the SML module
system are usually based on the use of dependent types [26, 24, 30]. But it is not easy to
discern the role of dependent types in the formal definition of SML [29], which, instead, uses a
semantics based on freshly generated tokens or stamps to account for the concepts of sharing
and generativity. Recent work by Leroy [22] provides a more type-theoretic treatment of the
same concepts but, once again, relies on non-trivial extensions of the underlying dependent type
theory. Additional machinery is necessary to extend the SML module system beyond its current
definition, for example, to support modules as first-class values [31, 20], higher-order modules
(12, 34, 41, 25, 7], polymorphism [19], and transluscent sums or manifest types [11, 21]. This
last item is motivated in part by the desire to admit a form of separate compilation; this is not
possible with the current definition of SML [2]. These extended systems are undoubtedly very
powerful, but they are also rather complex.

In the remaining sections, we show how relatively modest changes to HM can overcome the
limitations above: i.e. to support higher-order polymorphism (Section 2) and to package up
polymorphic values in first-class structures that can be used as function arguments (Section 3).
The resulting system, referred to here as XHM, is of interest in its own right as a study of the
boundaries of type inference and also as an implementation language for type and constructor
classes [43, 17]. However, in this paper, we focus on the possibility of using structures as the basis
for a module system. Unlike the SML module system, we do not make any separation between
the core and module languages. For example, structures can be assigned polymorphic types and
used as function arguments to implement higher-order modules. Another important difference
is that XHM structures do not contain type components (Section 4). The paper ends with a
summary of background and related work (Section 5) and with conclusions and suggestions for
future work (Section 6).

2 Higher-order HM

The extension of HM to support higher-order polymorphism is surprisingly straightforward. In
this section, we review the treatment of higher-order HM suggested by [17], and speculate why
this idea has only recently received any significant level of interest.

In standard HM, the type of an object may include variables representing a fixed, but arbitrary
type. For example, a polymorphic identity function can be defined using:

id T oa-—a
dr = =z

To emphasize the fact that the variable a represents an arbitrary type, it is common to write
the type of id as Ya.a — a, using explicit universal quantification.

dT6

To extend HM to support higher-order polymorphism, we need to allow the use of variables
to represent, not just arbitrary types, but also type constructors, etc. Following [17], we use a
system of kinds to distinguish between different forms of type constructor, given by the grammar:

K = the kind of all (mono)types
| &1 — k2 function kinds

Intuitively, the kind x; — k; represents constructors which take something of kind %; and
return something of kind xz. This choice of notation is motivated by Barendregt’s description
of generalized type systems {3].
For each kind x, we have a collection of constructors C* (including constructor variables a*) of
kind & given by:

c* x® constants
a”® variables

C*'=* C* applications

l

This corresponds very closely to the way that most type expressions are already written in
Haskell. For example, List a is an application of the constructor constant List to the constructor
variable a. In addition, each constructor constant has a corresponding kind. For example, writing
(—) for the function space constructor and (,) for pairing we have:

Int, Float, () : =*
List ok =%
(=), () R

The kinds of constructor applications are given by:

Ciuk =& C' k!
CC:«x

The task of checking that a type expression is well-formed can now be reformulated as the task of
checking that a constructor expression has kind *. The apparent mismatch between the explicitly
kinded constructor expressions specified above and the implicit kinding used in examples can be
resolved by a process of kind inference; i.e. by using standard techniques to infer kinds for user
defined constructors without the need for programmer-supplied kind annotations [17].

The set of type schemes is described by the following grammar:

r = C* monotypes
o = VYa®.oc polymorphic types
T

With these definitions in place, we can use the standard notation to specify the typing rules of
higher-order HM in Figure 1. Note the use of the symbols 7 and o to restrict the application of
certain rules to types or type schemes, respectively. Most of the rules are the same as in HM.
In rule (VI), the condition a® ¢ CV(A) is needed to ensure that we do not universally quantify
over a variable which is constrained by the type assignment A, where the expression CV(X)
denotes the set of all constructor variables appearing free in X.

The definition of a type inference algorithm for higher-order HM, and proof of its soundness
and completeness, follow almost directly from the corresponding definitions for standard HM.
The only complication is in the extension of the unification algorithm to constructors of arbi-
trary kind. The critical observation there is that there are no non-trivial equivalences between

117

(z:0)€ A
(var) —_—
Ak z:0o
(= E) AFE: 51 ARF:.7T
AFEF: T
(=+]) Az, z:PF+E: T
AR Xz E:P >
(let) AFE: o A,,:r.:al-F:r
At (letz=EinF):r
. X ~
(VE) AFE:Ya*o Ce€C
AFE:[C/a"]le
ArFE: ~2 CV(A
o o o g CV(4)
AF E :Va*.o

Figure 1: Typing rules for higher-order HM

constructor expressions, and that there is no way to define arbitrary abstractions over construc-
tor variables. This limits the power of the type system quite significantly although it does not
have any real impact on the use of XHM to describe modular structure. More importantly, this
restriction enables us to avoid the need for higher-order unification which would have resulted
in an undecidable type system. To avoid unnecessary distraction from the subject of this pa-
per, we refer the interested reader to [17] for further description and formalization of the topics
mentioned here.

Given that the extension of HM to the higher-order case is so straightforward, we might speculate
why this idea does not appear to have been explored in any detail elsewhere. One possibility
is that the notation for types in some languages forces a first-order view of types. We have

been fortunate that the concrete syntax for languages like Haskell encourages us to think of type
expressions like T a b rather than T'(a,b).

Another possible explanation is that, by itself, pure higher-order polymorphism seems too general
for practical applications. For example, it is hard to think of any useful functions with type
Ya.¥m.a — m a'. The only possibility is the function Az.L which, apart from having almost no
practical use, can be treated as having the more general type Ya.¥b.a — b without the need for
higher-order polymorphism.

Perhaps the most interesting aspect of higher-order HM is the way that it enables us to define
new datatypes with both types and constructors as parameters:

data Rec f = In (f (Rec f))
data ListF a b = Nil | Consab
type List a = Rec (ListF a)

data StateM m s a STM {(a = m (a,s))

The first three examples here can be used to provide a general framework for constructing
recursive datatypes and corresponding recursion schemes [27]. The fourth example can be used
to describe a parameterized state monad [18, 23].

1 An obvious way to formalize arguments like this would be to use higher-order analogues of well-known
parametricity conditions [39] or free-theorems {42].

118

The reader may like to check the following kinds for each of the type constructors introduced
above.

Rec N A e

ListF Dok k> x

List Dok =)k

StateM @ (x 3> %) =% % %

All of these kinds can be determined automatically without the use of kind annotations. As a
final comment, it is worth noting that the implementation of this weak form of higher-order poly-
morphism is straightforward, and that experience with practical implementations, for example,
Gofer, suggests that it is also very natural from a programmer’s perspective.

3 Polymorphic values in function arguments

In this section, we describe the second ingredient of XHM: the ability to support function argu-
ments with polymorphic components. Although this may seem to be a rather big step, we start
with an example to show that it is in fact already permitted in a system with type or constructor
classes where overloaded values are implicitly parameterized by dictionary structures. However,
the most important part of this is the use of explicit type information, not the overloading mech-
anisms involved. From this observation, we move on to a more general discussion of signatures
and structures in XHM and to some simple exampies to illustrate its use in practice.

3.1 A motivating example using constructor classes

As far as we know, the only other example of work where HM has been extended to higher-order
polymorphism is in the study of constructor classes [17] where it is combined with overloading.
Mechanisms for overloading provide a form of implicit parameterization that is appropriate when
the meaning of a particular symbol is uniquely determined by the types of values that are involved.
For example, the treatment of a type constructor as a (category-theoretic) functor in the canonical
manner is a good application. But there are also situations where the use of overloading is hard
to justify. It would be hard to believe that overloading, by itself, was responsible for the success
of higher-order polymorphism in the development of constructor classes.

Closer examination reveals that the real reason for the success of constructor classes is the ability
to deal with (implicit) function parameters containing values of polymorphic type. To illustrate
this claim, consider the following definitions?:

class Unit m where

unit = a—ma
twice 2 Unit m=>a—m(ma)
twice z = unit (unit z)

Note that the definition of twice would not be well-typed if unit was passed as an explicit
parameter as in:

twice unit z = unit (unit z)

In this case, the only possible type for twice would be Va.(a = @) = (a — a). However, using
the dictionary based techniques of Wadler and Blott [43], the constructor class program above

2The Unit class defined her can be thought of as a cut-down version of the Monad class used elsewhere {17, 23]
to support the use of monads in functional programming.

119

is implemented by translating it to obtain the following definitions:

type Unit m = {unit::Vaa—o ma}
twice 2 Unitm—a—-sma
twice u z = u.unit (u.unit z)

We use the notation {...} to represent a record of named components and the familiar notation
r.l to denote the extraction of a field ! from a record r. The important point in this definition is
that the unit component of the u record that is passed as an argument to twice has a polymorphic
type. By instantiating the quantified type variable to a for the inner call of unit and to m a
for the outer call, we obtain the required type. What makes this work is the fact that the unit
function is declared as a global function with a polymorphic type that allows the type variable a
in the example above to be instantiated to different types. It is this additional type information,
not the use of overloading, that is important for the work described in this paper. The approach
suggested by Wadler and Blott is to translate programs with implicit overloading into a language
that makes the use of dictionary structures explicit. In essence, one of the main claims of this
paper is that the target of this translation for the system of constructor classes is a useful and
powerful language in its own right.

3.2 Records, signatures and structures

To complete the formal description of XHM, we extend the higher-order HM of the previous
section to include record types (i.e. additional elements of C*) of the form:

{zi 101y ...;20 200}

For convenience, we will often abbreviate record types like this using expressions of the form
{z; :: 7y }, where ¢ ranges over some implicit set of indices. We will refer to record types of this
form as signatures.

Unlike signatures in the SML module system, signatures in XHM may contain free variables.
For example, the variable m appears free in the signature Unit m above. Alternatively, we can
think of Unit as a parameterized signature; in fact, for the purposes of kind inference, Unit is
treated as having kind (* — %) = *. On the other hand, SML also permits the declaration
of type constructors in signatures, with corresponding definitions in matching structures®. We

discuss the tradeoffs between signature parameters in XHM and type components in SML more
fully below in Section 4.

XHM signatures are also very much like records in SML, with one important difference: the
components of an SML record cannot have a polymorphic type. In this way, XHM can be
viewed as an attempt to unify the module and record languages of SML. It is also possible that
the XHM system can be further extended to support fully polymorphic extensible modules using
the approaches suggested by [16, 35], for example. We leave this as a topic for future research.
A previous attempt to explain the ML module system using record types has been presented by

Aponte [1], but does not make any use of a higher-order type system and differs substantially
from the approach described in this paper.

3For completeness, we should mention that SML structures may also include definitions of exceptions; we will
not address the use of exceptions in this paper.

120

Structure values will be written using the syntax:

struct
717 = (implementation of ;)
z, = (implementation of z,)

and will also be abbreviated using expressions of the form struct {z; = E;}, again with i
ranging over some implicit set of indices. We have chosen this particular syntax because it fits
well with the Haskell layout rule in the prototype implementation; in fact, as the examples below
illustrate, we actually allow a more liberal syntax that allows the use of function arguments and
pattern matching on the left hand side of equations.

The typing rules for structures are unlikely to cause many surprises. First the rule for construct-
ing structures:

AF E;:o;
Abstruct {z; = E;} : {zi 205}
It is useful to think of structure expressions as being like local definitions that bind several
variables, as in let {z; = E;} in F for example, except that the expression over which the

bindings are scoped is omitted and the result is the value of the bindings themselves, preserved
as a structure value.

A second rule is needed to describe the typing of a component that has been extracted from a
structure value. This is also straightforward:

AR E:{z;:0;}
AbF E.z;:0

An alternative, but equivalent, approach is to think of selectors as functions:
(-zj) = Yo{zizoi} > o0j

where v represents the free variables, or parameters, of the signature {z; :: o; }. If we think of
signatures as abstract datatypes, for example, forgetting the definition of Unit as a signature
type in the previous section and thinking of Unit m as some primitive type, then we can write
the type of selectors in a more concrete form:

(--unit) = VYm.Unit m — (Ya.a = m a)

Since a does not appear free in the constructor expression Unit m, we can move the quantifier
for a outwards to obtain an equivalent higher-order HM type for the selector:

(~unit) = VmVaUnitm—oa—ma

This gives a strong hint to the implementation of XHM type checking, and also to the proof
that XHM programs are sound and have principal type schemes. All that is necessary is suffi-

cient explicit type information to determine which selector type is appropriate in any particular
context.

3.3 The use of explicit type information

The need for explicit type information in programs using records will already be familiar to
SML programmers; the definition of SML requires that the shape of any record—i.e. a complete

121

list of its fields—can be determined at compile-time. What we have described here is a natural
generalization of this; we require not only the names of all of the fields, but also the types for
every field that is referenced. It is fairly easy to arrange for this mechanism to reduce to the
SML treatment of records when a polymorphic type has not been specified.

Type annotations are not necessary in many simple examples. For example, the following pro-
gram type checks without any additional type information:

fz = struct
hz = [z
u =z
vy = m.h(m.h m.u)
wherem = fy

In this case, we can calculate the following types for the components in the structure value in
the definition of f:
h = Yit—(i]
u 1 a
where a is the type of the argument z. Thus:
f = Vaa—={h:Vtt—-[tu:a}
and it follows that v has type Ya.a — {[a]].

In practice, explicit type annotations are typically only required for the definition of recursive or
mutually recursive structures (which are not permitted by the SML module system) or for func-
tions that manipulate structure values (corresponding to SML functor definitions where explicit
type information is also required in SML, or to higher-order or first-class modules which are
not supported by SML). For example, the type signature accompanying the following definition
cannot be omitted*:

makeUnit 2 a—>Unit m—ma

makeUnit z v = wu.unit z

On the other hand, we are free to store values of some type Unit m in data structures such as
lists and to use many higher order functions, for example Az.map (makeUnit z}, without further
type annotations.

Some may question the need for explicit type information in a language that is based on a system
like HM, but we do not expect that this will have any significant impact on programmers:

* Some form of explicit type information is already necessary in many languages based on
HM. For example, this includes the overloading mechanisms of Haskell and the treatment
of records, arithmetic, and structures in SML.

¢ Explicit type annotations are only required in situations where they would already be

required by programs using the SML module system, or in programs that cannot be written
with SML modules.

o Despite the fact that it is not necessary, the use of type annotations in implicitly typed
languages like ML and Haskell is widely recognized as ‘good programming style’, and
many programmers already routinely include type declarations in their source code. The
type assigned to a value serves as a useful form of program documentation. In addition,
this gives a simple way to check that the programmer-supplied type signatures, reflecting
intentions about the way an object will be used, are consistent with the types obtained by
type inference.

4Unless some alternative method is used to specify the type of u!

122

3.4 Simple applications of XHM structures

The examples given above have already demonstrated the use of XHM structures as first-class
values. In this section, we give some examples to illustrate other applications of these ideas.
One of the standard examples in texts on abstract datatypes is the definition of a type cpz of
complex numbers together with a collection of operations for manipulating values of this type.
It is often convenient to package these operations together, as described by the signature:

type Complez cpx = {mkCart, mkPolar :: Float = Float — cpz;
re, tm i cpr — Float;
mag, phase 2 cpr — Float; ...}

There are two obvious ways to implement complex numbers using pairs of floating point numbers
and choosing either a cartesian or polar representation:

rectCpz = struct
mkCart z y = (z,y)
mkPolar r § = (rcosf,rsind)
re (z, y) = =z
polarCpz = struct
mkCart zy = (sqrt (z? + y%),atan2 y 1)
mkPolar r 8 = (r,0)
= rcosé

re (r, 6)

As it stands, the implementation type of both complex number packages is the same and is
captured explicitly in the type of each; Complez (Float, Float). Later, in Section 4.3, we will
show how to make these types abstract, either completely by using an existential, or partially
by giving them names without revealing how they are implemented.

In fact, polymorphism already provides one form of abstraction. To illustrate this, suppose that
we want to define a package of complex number arithmetic. We start with a signature for a
general arithmetic package, considerably simplified for the purposes of this paper:

type Aritha = {plus :: a—a—a
neg a-—ra;...}

Now we can describe the construction of a complex arithmetic package from an arbitrary complex
number package using the following function:

compArith :2 Compler ¢t — Arith ¢
compArith ¢ = struct
plus z; z2 = c.mkCart (c.re z; + c.re 23) {c.im z; + c.im 23)

Since the same variable, ¢, appears as a parameter to both the the Compler and Arith signatures,
it is clear that the type of values that the arithmetic operations in the result can be applied to
is the same as the type of complex numbers provided as an argument. At the same time, the
fact that ¢ is universally quantified ensures that the definition of compArith cannot make any
assumptions about the implementation of complex numbers.

123

The definition of compArith corresponds to a functor in SML, but there is no need for a special
syntax for functor or structure definitions in XHM; the examples above use only the features
of the core language which just happen to involve structure values. The use of the same type
variable, ¢, in both argument and result signatures corresponds to a sharing specification®, often
considered one of the most difficult aspects of the SML module system {36]. In this setting,
sharing seems more familiar, simply identifying two types by using the same name for each.
For some applications, it is necessary to use type constructors rather than simple types as
signature parameters. For example, a specification of queue datatypes, similar in spirit to those
in Paulson’s textbook [36], might be given by the following signature:

type Queue ¢ = {empty : gq a;
eng * ga—a—q a;
null it q a = Bool;
hd T oga—ra
deq : qga—qa}l

The variable ¢ used here ranges over unary type constructors that correspond to functions
mapping types to types, i.e. over constructors of kind * — *x. We will also treat the variable a
appearing free in the type of each of the queue operators above as if it had been bound by an
explicit universal quantifier. For example, the type of the empty component in a structure of
type Queue ¢ is Va.q a.

The following structure describes the standard implementation of queues using lists:

listQueue :: Queue List

listQueue = struct
empty = Ni
eng n g = q+{n]
null Nil = True
null (Cons n ns) = False
hd (Cons nns) = n
deq (Cons n ns) = ns

We hope that the reader will have already recognized that the type declaration here is provided
for documentation only, and is not required to determine the type of listQueue.

4 Structures and signatures for modular programming?

One of the main goals of this section is to address the question of whether XHM can be used
as the basis for a module system with signatures and structures corresponding to interfaces
and implementations, respectively. The term ‘module system’ is already widely used in several
different ways with meanings including:

* A mechanism to support separate compilation and namespace management.

e A mechanism to enable the decomposition of large programs into small, reusable units in
a way that is resistant to small changes in the program.

o A mechanism for defining abstractions.

5SML sharing specifications can also be used to specify equalities between structure values. We do not attempt
to deal with this in XHM.

124

In this and following sections, we argue that XHM is consistent with such goals: Separate
compilation is ensured by maintaining a clear separation between types and values and program
decomposition is supported by the use of higher-order and nested polymorphism. Powerful
abstractions can be defined using parameterized structures. On the other hand, XHM does not

by itself allow the definition of abstract datatypes, although this can be dealt with using other
methods.

We pay particularly close attention to comparisons with the SML module system. The most
significant difference between these two systems is the fact that XHM uses parameterized signa-
tures while SML allows type components in signature and structure definitions. It is certainly
true that the inclusion of type components can be a very powerful tool; indeed, without careful
restrictions, this may prove too powerful, leading to intractability and undecidable type checking.
However, we argue that much can be accomplished without type components. This, we believe,
is also more in the spirit of HM than systems that include or manipulate type components in
modules. For example, in Milner’s original work [28], types are used as a purely semantic notion,
representing subsets of a semantic domain, not as any concrete form of value.

4.1 Lifting type definitions

We start with an important observation, that type definitions in a module can be lifted to
the top-level, which helps to explain why it is possible to omit type components from modular
structures. For example, consider the following SML fragment:

structure s
= struct
type T = Int
data List @ = Nil | Cons a (List a)

end
Despite appearances, the type synonym T and the type constructor List are not local to the
definition of 5. At any point in the program where s is in scope, these type constructors can be

accessed by the names s.T and s.List, respectively. Renaming any references to these types and

their constructors in the body of s, we can lift these definitions to the top-level, to obtain the
following XHM definitions:

type s.T = Int
data s.List a = s.Nil | s.Cons a (s.List a)
s = struct

In effect, all that the datatype definitions in the original SML program accomplish is to define

new top-level datatypes in which the type and value constructor names are decorated with the
name of the enclosing structure.

In some situations, renaming is not sufficient to allow type definitions to be lifted to the top-level.
For example, the List datatype in the following functor definition involves a ‘free variable’—the
type z.T, a component of the argument structure z:

functor f(z:SIG) : SIG’
= struct
data List = Nil | Cons ¢.T List

end

125

The solution in this case is to add an extra parameter to the datatype definition before moving
it to the top-level, as shown on the right. This is just a form of A-lifting {15, 37]:

data f.List t = f.Nil
| f.Const f.List

f 2 SIG t — SIG (f.List t)
fz = ...

Notice how the parameterized signatures in the type for f capture the relationship between the
types involved in the argument z and those involved in the result f z.

It is also important to mention that, since the form of higher-order polymorphism described in
Section 2 allows type constructors to be used as both signature and datatype parameters, the
same technique can be used to deal with type constructor components of functor arguments.

4.2 Generativity

Readers with experience of the SML module system will realize that the simple lifting of the
datatype f in the functor definition at the end of the previous section is not quite correct. The
reason for this is that SML adopts a notion of generativity, producing a new type constructor
each time the functor is applied to an argument. Thus two definitions:

structure s; = f(z)
structure s, = f(z)

will produce structures with incomparable type components. In truth, when we use an SML
functor to ‘generate’ a new datatype, we are in fact constructing a new instance of a fixed
datatype, which is then hidden, in essence, by a form of existential quantification. There is no
way to express the List type produced by applying f to an appropriate argument structure in
the notation of SML, so we are forced to package up instantiation of the actual implementation
type, f.List, and hiding of the resulting type as a single operation.

Lifting type definitions to the top-level allows us to express the type components of the result
of functor applications; for the example above, both s; and s, have type component f.List t,
assurning that z has type SIG t. We are then free to treat the question of whether we wish to
conceal these implementation types as a separate concern. Various methods for achieving this
are described below in Section 4.3. Note that higher-order polymorphism is essential, for the
general case, to express type components that depend on type constructors of higher kinds in
functor arguments.

We see then that, in XHM, there is no need for the same notions of generativity used in SML.
Of course, this only affects the static properties of the system. We would normally expect
the definitions above to produce two distinct copies of the same structure; these may not be

semantically equivalent in a language with side effects, for example, if the generated structures
include state components.

4.3 Abstraction

Abstraction—the ability to hide information about the implementation of a module and protect
against misuse—is an important feature of module systems that has been mentioned only briefly
in the discussion above. The system described in this paper allows us to distinguish between two
different forms of abstraction:

126

¢ The independence of the implementation of a module from the implementation of its im-
ports.

e The ability to hide details about the type or type constructor parameters in the signature
of a structure.

The compArith example in Section 3.4 has already illustrated how the first of these can be
expressed very elegantly in XHM using polymorphism,

For the second, we can identify at least two different levels of hiding that may be useful. One
alternative is to provide a name for a datatype, but to conceal the details of its implementation,
such as the constructor functions of an algebraic datatype or the expansion of a type synonym.
This is just a matter of scoping, and does not require any changes to the underlying type theory;
indeed, it is perhaps best dealt with at the level of compilation units rather than in the core
language itself.

For example, we might use a construct:

export Cpz, cpr from

type Cpzr = (Float, Float)
cpr ;2 Complex Cpz
cpz =

The intention here is that the definition of the cpr structure and the name of the Cpz type are
exported, but that the implementation of Cpz is not. Outside this definition, a programmer can
be sure that compArith cpz has type Arith Cpz, and that there is no danger of confusing this
with any other complex number package that happens to use pairs of floating point numbers as a
representation of complex numbers. Several languages support similar constructs, either through
explicit namespace management primitives (as in Haskell) or more specific features such as the
abstype construct in SML. While this approach can be quite useful, it is limited to top-level
definitions. For example, we cannot simulate the behaviour of SML functor application outlined
above where a new type is generated each time the functor is applied.

A second alternative is to use existential types, concealing not just the implementation, but also
the name of an abstract type. We strongly believe that XHM can be extended in a modular
fashion to support existential types, for example using dot-notation [5], and the combination of
type inference and existential typing that has been explored by Laufer [20]. Note that this can
be used to simulate the effects of datatype generativity; for example, if f is assigned a type of
the form SIG t — 3¢'.SIG’ ¥, then the definitions of structures s; and s, in the previous section
will produce distinct types s;.t’ and sp.¢'.

We believe that both of these approaches are useful in their own right. However, neither coincides
exactly with the form of abstract datatypes provided by SML; the latter falls somewhere between
the two extremes of named and existentially quantified abstract datatypes. It remains as an
interesting problem to determine whether there is a modular extension of XHM which provides
the same form of abstraction as SML.

4.4 Polymorphic modules

In recent work, Kahrs [19] has shown that it is not possible to define certain kinds of polymor-
phic module in SML. Fortunately, this problem does not occur with XHM modules. In fact, a
direct translation of Kahrs’ SML code to our framework already provides the desired form of
polymorphism. For reasons of space, we will restrict ourselves to a rather shorter example using

127

the following SML signature:
signature [/
= sig
type T
1d 2 T T
end

The problem identified by Kahrs is caused by the fact that the type component in any structure
matching I must be fixed to some specific type. In particular, it cannot be a variable, and hence
it is impossible to define a structure s that matches I such that s.id is the polymorphic identity
function.

The corresponding definition in XHM is:
type It = {id:t—>t}
But in this case, we can define a structure:

s = struct
idr = =z

which has type Vt.I ¢ and hence s.id can be used as a polymorphic identity function. We refer
the reader to [19] for examples of more useful applications of this form of polymorphism.

4.5 Practical concerns

Practical experience with the SML module system suggests a number of useful features for module
system designs and we will take the opportunity for a brief discussion of some of these ideas here.
First, we may be concerned that, in realistic applications, the number of type components in
a module may become quite large and that the corresponding parameterized signature would
become rather cumbersome and awkward. The easiest way to overcome this problem is to extend
the languages of constructors and kinds in the Higher-order HM system to include records (i.e.
labelled products) of the form:

(L=C" .ty = C")ty K1,y e oyt 2 Kn)

and to allow constructor variables ranging over such kinds. This gives the flexibility to package
several constructors into a single signature parameter. Apart from reducing the number of
parameters that have to be written, this also makes source code more resistant to change if, for
example, a new type parameter is added. Type sharing constraints can also be described quite
nicely in this framework. One possibility is to use a form of qualified types:

someprogram :: (r.z = s.y) = SIG r — SIG' s

to indicate that the z and y fields of r and s, respectively, are equal. Alternatively, we might
adopt a notation based on row variables to express the same constraints:

someprogram :: SIG (r |z = a) = SIG' (s | y = a).

Subsumption is another useful feature of the SML module system which allows unwanted com-
ponents of functor arguments to be ignored. Explicit type information is used to support this.
We believe that much the same techniques would also be applicable here, although we have not
yet attempted to establish this formally. Another interesting idea is to extend work on extensible

128

records to provide a collection of operators on structures, for example, using r \ ! to specify the
structure obtained by removing the ! component from r, or (r | z = v) to describe the extension
of a structure r with a new component z. This would provide an explicit alternative to the
implicit treatment of subsumption.

Finally, it is clear from our earlier discussions that XHM structures have much in common with
type classes in languages like Haskell. However, further work is needed to obtain a language
design that combines these two features in an elegant and orthogonal manner.

5 Type-theoretic background

To set the contributions of this paper in perspective, this section reviews some of the previous
attempts to provide a type-theoretic foundation for modular programming, concentrating in
particular, on two of the the most important features of such systems: abstraction and separate
compilation.

5.1 Existential typing and abstraction

One way to formalize the process of hiding the implementation of an abstract datatype is to use
an existential type {33, 6]:

type Complez’ = 3cpzr.Complezr cpz.

Informally, the existential typing indicates that there is a type cpr with the operations listed
above defined on it, but prohibits the programmer from making any assumptions about the
implementation type. Formally, the properties of existentials are described by the following
typing rules, based on standard rules for existential quantifiers in logic:

TEM:[r/tr
' M:(3tr)

This is often described as the introduction rule. Note that the implementation type ' for the
abstract type is discarded and does not appear anywhere in the conclusion.

At the same time, the requirement that N has a polymorphic type in the following elimination
rule ensures that we do not make any assumptions about the now hidden implementation type
since the definition behaves uniformly for all choices of ¢:

F'tM:3tr TEN:Ytror t¢ TV{r)
F'topen Min N :7

Existential types completely hide the identity of implementation types. For example, the types
cpz and cpz’ in the body of the following expression cannot be identified, even though they both
come from the same term c¢ of type Complez:

open ¢ in Acpz.\z : Compler cpr.
open ¢ in Acpz' Ay : Compler cpz'.

129

To emphasize this behaviour, suppose that we define an abstract data type of arithmetic opera-
tions, and attempt to reconstruct the compArith function from Section 3.4:

type Arith’ = 3Ja.Arith a

compArith 2 Compler’ — Arith’

compArith ¢ = open ¢ in Acpz.\p : ComplezOps cpz.
{add=...}

Given an implementation ¢ of type Complez’, we can use the expression compArith c to obtain
a package for arithmetic on complex numbers. However, this has no practical use because the
typing rules for existentials make it impossible to construct any values to which the add and
neg functions of the resulting package can be applied! The type system does not capture the
equivalence of the type of complex numbers used in ¢ with the type of values that can be
manipulated by compArith c.

An alternative approach to existential typing, using dot notation in place of the open construct
described above, has been investigated by Cardelli and Leroy {5]. The dot notation allows us
to identify the implementation types of two packages if they have the ‘same name’. This avoids
the first problem illustrated above, but not the second. Dot notation is also limited by the
unavoidably conservative notions of ‘same name’ that are needed to ensure decidability of type
checking, and is not very well-behaved under simple program transformations.

5.2 Dependent types and separate compilation

Motivated by problems with existential types, similar to those described above, MacQueen [24]
argued that dependent types provide a better basis for modular programming. In this framework,
structures are represented by pairs (r, M) containing both a type component 7 and a term M
whose type may depend on the choice of 7. Structures of this form can be treated as elements
of a dependent sum type, described informally by:

Se.f(t) = {(r, M) | M has type f(r) }.

The typing rules for dependent sums are standard (see [26], for example) and can be written in
the form:

'e-M:[~/tr T+ M:(Ztf(t)
T+ (M) (St.r) TF snd M : f(fst M)

The introduction rule on the left is very similar to the corresponding rule for existentials except
that the implementation type, 7/, is captured in the structure {r/, M) in the conclusion. The
elimination rule on the right indicates that, if M is a structure of type Xt.f(t), then the second
component, snd M, of M has type f(fst M), where fst M is the first component of M.

In this setting, the open M in N construct used in the treatment of existentials can be replaced
by the term N (fst M) (snd M), but this is not abstraction preserving in the sense of Mitchell
[32]. Informally, dependent sums are more powerful than existentials because of the ability to
name the type component fst M of a structure M. Of course, this also means that the type
component of a structure is no longer abstract.

In a sense, a simple treatment of modules using dependent types is actually too powerful for
practical systems because it interferes with separate compilation. More precisely, it makes it
more difficult to separate compile-time type-checking from run-time evaluation. To illustrate
this, we recast the previous definitions of complex number and arithmetic types using dependent

130

sums to obtain:

type Complez’ = Zcpz.Complez cpr
type Arith’ = Xa.Arith a

compArith 2 Complex’ — Arith’
compArith ¢ = (fst ¢,{add =...})

At first glance, this definition suffers from the same problems as the previous version using
existentials; the type Complez’ — Arith’ does not reflect the fact that the type components of
the argument and result structures are the same. However, this information can be obtained by
carrying out a limited degree of evaluation during type checking. For example, if ¢ = (r, M),
then:

fst (compArith ¢) = fst (r,{add = ...}) =T

To ensure that static type checking is possible, it is important to distinguish compile-time eval-
uation of this kind from arbitrary run-time execution of a program. Unfortunately, treating a
functor as a function of type (Es.f(s)) — (Zt.g(t)) does not reflect this separation; in general, a
type of this form may include elements in which the type component of the result depends on the
value component of the argument. As an alternative, Harper, Mitchell and Moggi [12, 34] have
shown that a suitable phase distinction can be established by modelling functors from Xs.f(s)
to Lt.g(t) as values of type Th.(Vs.f(s) — g(h(s))) where h ranges over functions from types to
types, corresponding to the compile-time part of the functor.

As the example above shows, it is sometimes necessary to inspect the implementation of a
structure to find the value of a type component. Not surprisingly, this means that it is not
possible to provide true separate compilation for SML [2]. Even the ‘smartest recompilation’
scheme proposed by Shao and Appel [40] does not permit true separate compilation because it
delays some type checking, and hence the detection of some type errors, to link-time.

The need for type sharing constraints in functor definitions is, in fact, motivated by similar
problems; since it is impossible to evaluate the formal parameters of a functor, we must instead
supply the required identities between type components using explicit sharing equations. Further
extensions to the basic theory of dependent types are needed to deal with this, and other ideas

including generativity, polymorphism, abstraction, higher-order modules, and modules as first-
class values.

5.3 Translucent sums and manifest types

Recent proposals for translucent sums by Harper and Lillibridge [11] and manifest types by
Leroy [21] provide a compromise between existential typing and dependent sums, allowing the
programmer to include additional type information in the signature for a structure. For these
systems, we use an infroduction rule of the form:

THM:[+/tr
FFM:3t=1.7)

Notice that, unlike the previous cases, the implementation type r’ appears in the inferred type
although this can be hidden by coercing it to a standard existential type:

F'EM:3t=1.1)
T'FM:(3tr)

131

These systems provide better support for abstraction and separate compilation than Standard

ML. However, the underlying theories are quite complex and unfamiliar, relying on the use of
dependent types.

5.4 Comparison with XHM

For all of the examples described above, the type of a module, package or structure is given by
an expression of the form Qt.f(t) for some parameterized record type f(¢) and some quantifier
Q. Most of the problems described above are caused by the fact that these quantifiers can be
‘overly protective’, limiting the ability to propagate type information. In the previous sections
of this paper, we have shown how to use record types of the form f(¢) as signatures, treating
quantifiers as a separate issue.

6 Conclusion

We have presented an extension of the Hindley-Milner type system that provides:
e Support for higher-order polymorphism.

o Support for function arguments with polymorphic components, sometimes requiring ex-
plicit type information to guide the main type inference process.

e A clear separation between static and dynamic semantics.
This leads to a module system in which:
o Structures are first-class values.

e Higher-order modules (i.e. first-class functors) are admitted. Leroy [21] gives several
examples of higher-order modules, some of which can only by typed using his system
of manifest types, while others require different higher-order extensions of SML [25]. All
of these examples, including those in [25], can be typed in XHM.

¢ Polymorphic modules and structures may be defined.

¢ True separate compilation is possible: the interface to a separately compiled structure is
completely determined by its signature, so there is no need to inspect its implementation.

o Since the module language is based on HM, we believe that it will be easy to use, partic-
ularly for programmers that are already familiar with the core languages of Standard ML,
Haskell or similar languages.

e We avoid the need for some of the more complicated aspects of the Standard ML type
system such as generativity and sharing.

By contrast, none of these is possible with the SML module system without, often substantial,
modification. One of the main topics for future research is to investigate the role of implicit
subsumption; i.e. the ability to discard elements from a structure as a result of signature matching
in SML. We believe that this can be accomplished using a simple form of subtyping, guided by
type annotations, or otherwise by extending XHM with an mechanism for controlling the set of
bindings that are exported from a structure.

132

We are currently working on a practical implementation of the ideas presented in this paper
for a Haskell-like language. The main goal of this work is to provide the functionality of SML-
style modules while preserving the basic character of Haskell, including type classes, side-effect
free, call-by-name/lazy semantics, implicit mutual recursion, and so forth. We intend to use our
prototype to investigate the use of XHM modules in realistic applications, and to assess how well
the ideas described in this paper fare in a practical module system.

Acknowledgements

Many of the ideas presented in this paper were developed while the author was a member of the
Department of Computer Science, Yale University, supported in part by a grant from ARPA,
contract number N00014-91-J-4043.

My thanks to Paul Hudak, Sheng Liang and, in particular, Dan Rabin and Xavier Leroy for their
valuable comments and suggestions during the development of the ideas presented in this paper.

References

(1] Maria Virginia Aponte. Extending record typing to type parametric modules with sharing.
In Proceedings 20th Symposium on Principles of Programming Languages. ACM, January
1993.

[2] Andrew W. Appel and David B. MacQueen. Separate compilation for Standard ML. In
Conference on Programming Language Design and Implementation, Orlando, FL, June 1994.

{3] H. Barendregt. Introduction to generalised type systems. Journal of functional programming,
1, April 1991.

(4] Edoardo Biagioni, Robert Harper, Peter Lee, and Brian G. Milnes. Signatures for a network
protocol stack: A systems application of Standard ML. In Proceedings of the 1994 ACM
conference on Lisp and Functional Programming, Orlando, FL, June 1994.

[5] Luca Cardelli and Xavier Leroy. Abstract types and the dot notation. Technical Report
report 56, DEC SRC, 1990.

[6] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymor-
phism. Computing Surveys, 17(4), December 1985.

[7] Pierre Crégut and David MacQueen. An implementation of higher-order functors. In Record
of the 1994 ACM SIGPLAN Workshop on ML and its Applications, Orlando, FL, June 1994.

[8] L. Damas and R. Milner. Principal type schemes for functional programs. In 9th Annual
ACM Symposium on Principles of Programming languages, pages 207-212, Albuquerque,
N.M., January 1982.

[9] J.-Y. Girard. Une extension de l'interprétation de Gédel i ’analyse et son application a
Pélimination des coupures dans ’analyse et la théorie de types. In Fenstad, editor, Proceed-
ings of the Scandanavian logic symposium. North Holland, 1971.

[10] Jean-Yves Girard. The system F of variable types, 15 years later. In Gérard Huet, editor,

Logical Foundations of Functional Programming, chapter 7, pages 87-126. Addison Wesley,
1990.

133

[11] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules
with sharing. In Conference record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 123-137, Portland, OR, January 1994.

[12] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the phase
distinction. In Conference record of the Seventeenth Annual ACM Symposium on Principles
of Programming Languages, pages 341-354, San Francisco, CA, January 1990.

[13] R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of
the American Mathematical Society, 146:29-60, December 1969.

(14] P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report on the Programming Language
Haskell, A Non-strict Purely Functional Language (Version 1.2). ACM SIGPLAN Notices,
27(5), May 1992.

(15] T. Johnsson. Lambda lifting: transforming programs to recursive equations. In Jouan-
naud, editor, Proceedings of the IFIP conference on Functional Programming Languages and
Computer Architecture, pages 190-205, New York, 1985. Springer-Verlag. Lecture Notes in
Computer Science, 201.

[16] Mark P. Jones. Qualified Types: Theory and Practice. PhD thesis, Programming Research
Group, Oxford University Computing Laboratory, July 1992. Published by Cambridge
University Press, November 1994.

[17] Mark P. Jones. A system of constructor classes: overloading and implicit higher-order poly-
morphism. In FPCA ’93: Conference on Functional Programming Languages and Computer
Architecture, Copenhagen, Denmark, New York, June 1993. ACM Press.

(18] M.P. Jones and L. Duponcheel. Composing monads. Research Report YALEU/DCS/RR-
1004, Yale University, New Haven, Connecticut, USA, December 1993.

{19] Stefan Kahrs. First-class polymorphism for ml. In D. Sannella, editor, Programming lan-r
guages and systems - ESOP 94, New York, April 1994. Springer-Verlag. Lecture Notes in
Computer Science, 788.

[20] Konstantin Liufer and Martin Odersky. An extension of ML with first-class abstract types.
In ACM SIGPLAN Workshop on ML and its Applications, San Francisco, June 1992.

[21] Xavier Leroy. Manifest types, modules and separate compilation. In Conference record
of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 109-122, Portland, OR, January 1994.

[22] Xavier Leroy. A syntactic theory of type generativity and sharing. In Record of the 1994
ACM SIGPLAN Workshop on ML and its Applications, Orlando, FL, June 1994.

[23] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters.
In Conference record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, San Francisco, CA, January 1995.

[24] David MacQueen. Using dependent types to express modular structure. In 13th Annual
ACM Symposium on Principles of Programming languages, pages 277-286, St. Petersburg
Beach, F.L., January 1986.

134

(25] David B. MacQueen and Mads Tofte. A semantics for higher-order functors. In D. Sannella,

editor, Programming languages and systems - ESOP '94, New York, April 1994. Springer-
Verlag. Lecture Notes in Computer Science, 788.

[26] Per Martin-Lof. Constructive mathematics and computer programming. In Logic, Method-
ology and Philosophy of Science, VI. North Holland, Amsterdam, 1982.

[27] Erik Meijer and Mark P. Jones. Gofer goes bananas. In preparation, 1994.

[28] R. Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3), 1978.

[29] Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML. The MIT
Press, 1990.

[30] John Mitchell and Robert Harper. The essence of ml. In Fiftheenth ACM Symposium on
Principles of Programming Languages, San Diego, CA, January 1988.

[31] John Mitchell, Sigurd Meldal, and Neel Madhav. An extension of Standard ML modules with
subtyping and inheritance. In Conference record of the Eighteenth Annual ACM Symposium
on Principles of Programming Languages, Orlando, FL, January 1991.

(32] John C. Mitchell. On abstraction and the expressive power of programming languages.
In T. Ito and A.R. Meyer, editors, Theoretical Aspects of Computer Software, New York,
September 1991. Springer-Verlag. Lecture Notes in Computer Science, 526.

[33] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM
Transactions on Programming Languages and Systems, 10(3):470-502, July 1988.

[34] Eugenio Moggi. A category-theoretic account of program modules. In Summer conference
on category theory and computer science, pages 101-117, New York, 1989. Springer-Verlag.
Lecture Notes in Computer Science, 389.

[35] Atsushi Ohori. A compilation method for ml-style polymorphic record calculi. In Proceedings
19th Symposium on Principles of Programming Languages. ACM, January 1992.

[36] L.C. Paulson. ML for the working programmer. Cambridge University Press, 1991.

[37] S.L. Peyton Jones. The implementation of functional programming languages. Prentice Hall,
1987.

[38] J.C. Reynolds. Towards a theory of type structure. In Paris colloquium on programming,
New York, 1974. Springer-Verlag. Lecture Notes in Computer Science, 19.

[39] J.C. Reynolds. Types, abstraction, and parametric polymorphism. In R.E.A. Mason, editor,
Information Processing 83, Amsterdam, 1983. North-Holland.

[40] Z.Shao and A. Appel. Smartest recompilation. In Proceedings 20th Symposium on Principles
of Programming Languages. ACM, January 1993.

[41] Mads Tofte. Principal signatures for higher-order program modules. In Conference record of
the Nineteenth annual ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages, January 1992.

135

[42] P. Wadler. Theorems for free! In The Fourth International Conference on Functional
Programming Languages and Computer Architecture, FPCA ‘89, Imperial College, London,
September 1989.

{43] P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In Proceedings of
16th ACM Symposium on Principles of Programming Languages, pages 60—76, Jan 1989.

136

Data Compression in Haskell
with Imperative Extensions

A Case Study

Peter Thiemann*
Universitat Tibingen, Germany

1 Introduction

Many algorithms have elegant implementations in functional programming languages. However, for certain
problems performance degrades since variables in the imperative sense (and hence side-effects) are absent
{12]. This is especially true for algorithms which destructively change an internal state. A well-known
example for such an algorithm is depth-first-search in graphs {14]. Its complexity (O(v + ¢), where v is the
number of vertices and e the number of edges of the graph) hinges on the availability of a mutable data
structure (ie a boolean vector), where every mutation takes constant time. Data structures of the latter
kind are simply not available in current functional languages and must therefore be simulated using other
(immutable) data structures, eg balanced trees’. In terms of the complexity we obtain an additional factor
O(logv) and depth-first search is rendered with a time-complexity of O(vlogv + ¢).

A new programming style called imperative functional programming (11, 6, 7] integrates I/O-operations
as well as lazy computations on mutable variables and arrays in a lazy functional language. This integration
keeps all the good properties of pure functional programming languages intact, eg freedom of side-effects,
simple program transformation, and verification (just to name a few). King and Launchbury [5] give an im-
pressive demonstration of this with several graph algorithms based on depth-first search. Also, the potential
of parallel execution inherent in functional languages need not be hampered if imperative features are used
[16].

The current case study is an attempt to assess imperative functional programming with respect to a
real application. The real application in our case is the LZW algorithm for data compression (Lempel, Ziv,
and Welch [18, 17]). It is really an every-day application, since watching pictures in the (formerly) popular
GIF-format implies decompression using exactly this algorithm. The well-known program compress employs
this algorithm as well.

The performance of the LZW-algorithm depends crucially on global mutable state, which may be a hash
table or a trie (see below). Furthermore, it depends on the availability of efficient bit operation in the
language, since—in theory—the output of the algorithm is a sequence of bits, which must be transformed
into a sequence of characters so as to be written to a file. Last not least, I/O-throughput plays an important
role as well.

For our evaluation we have implemented different variants of the LZW algorithm in Haskell {3] making
use of the imperative extensions as supported by the Glasgow Haskell compiler [9]. For comparison we have
used programs written in “pure” Haskell and C [13]. The expressiveness of Haskell is demonstrated by the
fact that the current text is at the same time a complete working Haskell program, which implements the
LZW algorithm. The following paragraph is a sacrifice towards this aim?.

*Universitat Tiibingen, Sand 13, D-72076 Tiibingen, Germany, E-mail: thiemannQinformatik.uni-tuebingen.de

! The language Haskell [3] has arrays, but they are monolithic (all elements are defined on construction of the array) and
immutable (all elements remain constant through the whole life-time of the array).

2Compile with ghc-0.23 -cpp -fglasgow-exts lzw-trie.lhs -o lzw-trie.

137

> module Main

> where

> import PreludeGlaST hiding (seqST) renaming
> (unsafeInterleaveST to interleaveST,
> thenStrictlyST to thenST,

> thenST to thenLazilyST,

> unsafeFreezeArray to freezeirray,

> _MutableArray to MutArr,

> _ST to ST)

> seqST :: [STs O] ->sSTs Q

> seqST [] = returnST ()

> 56qST (m: ms) = m ‘thenST‘ \ () -> seqST ms
#define runST _runST

The remainder of the text is structured as follows. Section 2 briefly introduces imperative functional
programming in Haskell, directed towards operations on mutable arrays. Section 3 explains the implementa-
tion of the LZW algorithm using the imperative extensions. Section 4 introduces a new primitive operation,
which allows the delayed creation of arrays and Sec. 5 shows the implementation of “staged arrays”. Sec-
tion 6 gives runtimes and memory usage in comparison to other implementations and discusses problems in
programming with lazy functional languages that aggravate in connection with the imperative extensions.
Following the conclusion (Sec. 9) there are some appendices which make the program runnable. They define
the main program, some conversion functions, and the data representation.

2 Imperative Extensions of Haskell

The imperative extensions of Haskell are built on state transformers [6]. A state transformer of type ST s
a is a function which maps a state of type s to a pair consisting of a result of type a and a new state:

type ST 3 a = 5 -> (a, s)

Now, there are primitive transformers which are necessary to build and compose transformers out of
basic transformers. The transformer returnST x leaves the state s alone and delivers the result x:

returnST :: a -> ST s a
returnST x = \s ~> (x, s)

Next, it must be possible to combine two transformers to form a new transformer. The result of the first
transformer shall be the input of the second transformer. The required function is:

thenST :: STs a -> (a->STsb) -=>STsb
thenST m £ = \s -> let (x’, s’) =m s in f x’ 8’

The interesting fact with the functions returnST and thenST is that the state s is threaded through the
whole computation without being duplicated or discarded. This way, the sequence in which primitive state
transformers are executed is fixed.?

Now we can add basic operations on mutable arrays as state transformers:

type MutArr s ix value ~-= abstract

An object of type MutArr s a b is a mutable array which is only usable in state s, which is indexed by

values of {ype ix, and the elements of which all have type b. Only the following operations are defined on
Mutirr:

newArray :: (ix, ix) -> value -> ST s (MutArr s ix value)
readArray :: MutArr s ix value -> ix -> ST s value
writeArray :: MutArr s ix value -> ix =-> value -> ST s ()

3More precisely: the execution sequence is fixed only for those transformers which are strict in the propagated state.

138

Here, newArray (low, high) init isa transformer which yields a newly created array with index range low
through high inclusive, with all elements set to init. The transformer readArray arr i yields the element
i of array arr. Finally, writeArray arr i x is a transformer which overwrites the ith element of array
arr with new value x. This last operation does not copy the array, but changes it in-situ “destructively”, as
common in imperative languages.

In contrast to imperative languages, in the first place a state transformer is a data object like any other,
ie evaluation of newArray (low, high) init yields a function which only creates a new array when it is
finally executed. Conceptually, the whole “state-based computation” is first constructed and then executed.
By virtue of lazy evaluation the construction and evaluation really occur in an interleaved manner. This is
the well-known “coroutining effect” of lazy evaluation [4].

A transformer is (really and finally) executed when it is subjected to the function runST, which accepts a
transformer, executes it, and returns its final result while discarding the final state. It serves to embed state-
based computations in pure functional computations. The desired encapsulation is gnaranteed by giving
runST a special type {6, 15]. Simplified, every execution of runST generates a fresh state with a fresh type
that does not occur anywhere else. Thus, mutable objects that are created and manipulated in a specific
state cannot be manipulated in any other state, they are tied to their creating state by the state parameter in
their type. Any program that tries to compromise this encapsulation is not type correct and hence rejected
by the type checker.

As already said above, the sequence in which the operations are executed is fixed (by their order in the
program text). But it is not required that all of the operations must be executed. Only those read and
write operations on mutable arrays are actually performed that are necessary to produce the final result. It

is out of the scope of this paper to provide more detail on how this is achieved. A comprehensive account is
found in [7].

3 The Algorithm of Lempel, Ziv, and Welsh

The LZW algorithm comprises a function for coding text and one for decoding it. Coding compresses a
sequence of characters to a sequence of code words, while decoding reverses this process.

> type Byte = Char

> byteRange = (0, 255)

> type Code = Int

> initialCode = snd byteRange + 1
> maxCode =2 "12-1

> codeRange = (0, maxCode)

Input and output characters both have type Byte. Its range is specified with byteRange.

Code is the type of code words. Every code word represents a sequence of characters. initialCode is
the lowest code which is ever assigned by the algorithm. It represents the first to characters of the input.
The code words 0 through initialCode-1 are reserved for the single character sequences. maxCode is the
maximum code which is assigned by the algorithm. The current implementation confines the maximum code
to fit into 12 bits.

3.1 Coding

> data Table s = Empty | Table Code (VecTable s)
> type VecTable s = EncodeArray s (Table s)

During the process of coding, a trie is constructed, ie a tree where the nodes are labeled with code words and
the arcs are labeled with input characters. Every path from the root to a node corresponds to a sequence of
characters which already occurred in the input. The label at the node reached by some sequence of characters
is its encoding. The tree expands dynamically as coding proceeds and new sequences are encounters. Hence,
the tree data structure should be mutable.

139

Every node of this tree is an element of the type Table s®. It is either Empty (if the sequence that leads
to this node is not yet present in the tree) or it is of the form Table code vector, ie a pair of a code word

code and a vector of successor nodes. The latter is a mutable array of type VecTable s where the ith
element determines the successor node which is reached through the arc labeled with i.
First, the trie must be initialized with the entries and code for every possible one-character-sequence.

The codes of these sequences are in the “forbidden” range (0, initialCode-1). The resulting root table
is of type VecTable s as it is never empty.

> initLZWtable =

> newEncodeArray byteRange Empty ‘thenST‘ \ root ->

> seqST [newEncodeArrayLazily byteRange Empty ‘thenST‘ \ branch ->
> writeEncodeArray root byte (Table byte branch)

> | byte <- [£st byteRange .. snd byteRange]]

> ‘thenST‘ _ ~> returanST root

In line 2 a new array is created with index range byteRange. It represents the root of the trie. Lines 3-5
allocate the empty successor arrays for every byte in byteRange. The result is the root of the trie.

The construction of the vectors of successor nodes is an interesting point: if all arrays would be allocated
immediately, the initialization process alone would devour space for the 256 elements of the root node and for
the 256 - 256 = 65536 elements of the successor vectors for the immediate successors of the root. Obviously,
this is a waste of resources since often (eg when coding a text file) not all possible characters occur in an input
file. This is remedied through the delayed construction of the branch-arrays using newEncodeArrayLazily
(cf. Sec. 4). These arrays are only created when they are first accessed.

A further reduction of space usage should be possible through the use of staged arrays. A staged array
is an array with one (or more) stages of indirection. The outer levels of arrays only contain references to
sub-arrays which contain a subrange of the index range and are only allocated on demand, and so on (see
Sec. 5).

Th)e following function enter does the real coding work. It accepts a sequence of characters of type

[Bytel, the code of the already processed sequence code, the current position in the trie vectable, the root
of the trie rootvec, and the next available code nextcode.

> enter :: [Byte] -> Code -> VecTable s -> VecTable s -> Code -> ST s ([Int])
> enter [] code vectable rootvec nextccde =

> returnST [code]

> enter (byte: bytes) code vectable rootvec nextcode =

> readEncodeArray vectable {ord byte) ‘thenST‘ \ table ->

> case table of

> Empty ->

> (if nextcode <= maxCode then

> newEncodeArrayLazily byteRange Empty ‘thenST‘ \ newtable ->

> writeEncodeArray vectable (ord byte) (Table nextcode newtable)
> else

> returnST ())

> ‘thenST* \ () -> enter (byte: bytes) 0 rootvec rootvec (nextcode+1)
> ‘thenST‘ \ morecode -> returnST (code: morecode)

> Table code vectable ->

> enter bytes code vectable rootvec nextcode

In order to code the next character byte of the input sequence, it is first checked, whether there is a
corresponding successor node in the trie (L5). In this case, the remaining input is coded starting from the
successor node (L15,16). Otherwise (L.7-14) it is checked whether there are still code words available. If this is
the case, a new node is (lazily) created (L9,10) and written to the successor vector of its predecessor, together
with its code. Nothing happens in the other case. In both cases coding continues with the remaining input
including the character just processed starting over from the root. The result is the code of the predecessor
node followed by the coding of the remaining input.
If the input is depleted the code of the previously visited node is returned (L2,3).

4The type parameter s is only present for technical reasons.

140

The function encode transforms a sequence of character into a state transformer, which returns a list of
code words. It first initializes the trie and then starts enter with the input sequence bytes on the root of
the trie.

> encode :: [Byte] -> ST s [Code]

> encode bytes =

> initLZWtable ‘thenST‘ \ rootvec ->

> enter bytes 0 rootvec rootvec initialCode

3.2 Decoding

In order to decode a sequence of code words, a mapping from code words to sequences of characters must be
available. This mapping is constructed during the decoding process, similar to the trie construction during
coding. We realize the mapping using a mutable array with index range codeRange. This array is first
initialized with the sequences of length one.

initLZWdecode =
newDecodeArray maxCode "" ‘thenST‘ \ dtable ->
seqST [writeDecodeArray dtable byte [chr bytel
| byte <- [fst byteRange .. snd byteRange]l
‘thenST* _ -> returnST dtable '

VVVVYyYy

Decoding (decode0)} is simple in principle: every incoming code word is looked up in the decode array and
the character string str that is found there is returned. Simultaneously, a new entry is deposited in the
decode array. Its character sequence is determined from str and the first character of the decoding of the
next code word.

The only problem is that under certain circumstances a code word may occur in the input before its
value is entered in the decode array. This case occurs if during compression the trie contains an entry for
the character sequence cw and the next following input starts with cwewc (c is a single character, w is an
arbitrary sequence of characters). In this case, the code for cw is emitted upon reading the second ¢, and
the code for cwc upon reading the third c. At decoding time, the latter code cannot yet be in the table.

Therefore, the sequence of characters returned from decoding the previous code word must be emitted,
extended at the end by its first character.

> decode0 dtable nextcode laststr (code: rest) =

(if code >= nextcode then
returnST (laststr ++ [head laststr])
slse
readDecodeArray dtable code) ‘thenST* \ str@(byte: _) ->
(if nextcode > maxCode then
returnST ()
else

writeDecodeArray dtable nextcode (laststr ++ [bytel))
‘thenST‘ _ >
decode0 dtable (nextcode + 1) str rest ‘thenST‘ \ showRest ->
returnST (showString str . showRest)
decode0 dtable nextcode laststr [] =
returnsT id

VVVVVVVVVVYVVYV

> decode00 dtable (code: rest) =

> readDecodeArray dtable code ‘thenST‘ \ str ->

> decode0 dtable initialCode str rest ‘thenST‘ \ showRest ->
> returnST (showString str . showRest)

decode :: [Byte] -> ST s ShowS

decode codestring =
initLZWdecode ‘thenST* \ dtable ->
decode00 dtable (ercode codestring)

vV V V V

141

4 Lazy Array Allocation

When the trie is constructed it is useful to allocate the arrays at the single nodes lazily. That is, they should
only be allocated if they are really needed. Since a sequence of characters which has been entered inx the trie
may never again occur in the remaining input (and be read starting from the root of the trie), chances are
not bad that the vector of the successor nodes is never used. Therefore, every such vector of successor nodes
is allocated lazily.

The provided transformer newArray does not have this property. Whenever it is executed the array is
immediately allocated. To implement newArrayLazily we need a new primitive transformer, which accepts
a transformer and runs its independent from the rest of the computation. This transformer interleaveST of
type ST s a -> ST s a allows us to escape from the strict sequentialization of a state thread and to start
an independent sequential computation. As it is possible to introduce side-effects using interleavesST, it is
not safe®, but sometimes extremely useful.

The application which we demonstrate here is free of side-effects, since only the allocation of the array is

delayed. Every read or write operation on an array is strict in the array. This strictness forces the allocation
of the array before the actual access happens.

> newArrLazily :: (Int, Int) => b -> ST s (MutArr s Int b)
> newArrLazily bounds init = interleaveST (newArray bounds init)

The correct implementation of such a data structure is non-trivial in an imperative programming language.
In Haskell, the delayed allocation of arrays can be realized with one local change in the program text. In
many other languages non-local changes are necessary to accomplish.

5 Staged Arrays

When an ASCII text file is compressed, it contains about 100 different characters. Therefore, every successor
vector in the trie is at least 50% empty. To put an end to this waste of space and time® it appears sensible to
augment the vectors with an indirection stage. On the outermost level there is an arrays of mutable arrays.
Each of these serves a specific interval of the entire index range. Since more than half of the arrays are
never used, they should be allocated lazily: the array is allocated on first use; if it is never used it does not
consume memory’.

The desired data structure, the staged array, is represented by a pair consisting of a standard Haskell-
array (the array of indirections, where the elements are mutable arrays) and the span of the intervals. For
simplicity, all array are indexed with integers.

To allocate a staged array the indirection array is first created as a mutable array, which is then filled
with delayed arrays, and finally transformed into a Haskell array (using freezeArray). The latter operation
must copy its argument array in general, since side-effects on the Haskell array are otherwise possible. In the
present case, there is no further live reference to the mutable array (stagel does not occur free in \arr ->
...), hence we need not insist on copying the array. It remains to answer the question why the indirection

array is not simply left as a mutable array. The reason is the following operation createStagedArray, a
delayed variant newStagedArray:

> type StagedArray s b = (Array Int (MutArr s Int b), Int)

newStagedArray :: Int -> (Int, Int) -> b -> ST s (StagedArray s b)
newStagedArray chunkSize (lo, hi) init =
let lochunk = lo ‘div‘ chunkSize
hichunk = hi ‘div‘ chunkSize
dunmy = error "uninitialized staged array"
in newArray (lochunk, hichunk) dummy ‘thenST‘ \ stagel ->
seqST [newArrLazily (0, chunkSize - 1) init ‘thenST‘ \ realdrray ->
writeArray stagel chunk realArray

VvV VVVVVVYV

®Indeed, Glasgow Haskell calls it unsafeIntarleavesT.
8The arrays must be initialized.
7Unfortunately, its suspension consumes some amount of memory.

142

Vv V.V Yy

v

>
>

| chunk <- [lochunk .. hichunkl]

‘thenST‘ _ ->
freezeArray stagel ‘thenST* \ arr ->
returnST (arr, chunkSizse)

createStagedirray :: Int -> (Int, Int) -> b -> ST s (StagedArray s b)
createStagedArray ¢ s i =

interleaveST (newStagedArray ¢ s i)

Since the transformer interleaveST generates a new independent thread of computation, newStagedArray
only executes those operations that are necessary to compute the result (the argument on returnsT). If this
was just returnST (stagel, chunkSize) only the array of indirections would ever be created, the delayed
arrays would never be written, and the first access to any of these would yield a runtime error®. In contrast,
freezeArray only returns a result after all previous transformers have executed and delivered their results®.
Reading and writing of staged arrays is less interesting and only included for completeness.

> readStagedArray ::

StagedArray s b => Int => ST s b

> readStagedArray (stagel, chunkSize) i =

>

VVVVVVVYV

let chunk
offset

=i ‘div‘ chunkSize
= i ‘mod‘ chunkSize

in readArray (stagel ! chunk) offset

writeStagedArray :: StagedArray s b -> Int -> b -> ST s ()
writeStagedArray (stagel, chunkSize) i x =

let chunk
offset

= i ‘div‘ chunkSize
= i ‘mod® chunkSize

in writeArray (stagel ! chunk) offset x

6 Assessment and Comparison

The comparison described below refers to the following programs:

compress | compress from the SUNOS 4.1.3 distribution.

lzwe A simple implementation in C using tries (as balanced trees) [13].
hcz The corresponding program in (pure) Haskell [13].

lzwh An improved version of hcz due to John v. Groningen [8].
lzw-trie The program described in the current text.

lzw-hash | Another version of the current program which employs a hash table instead of a trie.
The hash table is implemented as a mutable array. The elements are overflow lists of
pairs of key and data.

lzw-itl Version using an imperative version (with mutable variables) of the data structure of
lzwh.
lzw-it2 The same, but implemented with mutable arrays.

For experimental evaluation we have used some files from the “Standard Calgary Text Compression Corpus”
(1, 2] (the same as in [13]). Here are their characteristics:

name size | contents

paperl 53161 | text: scientific

bib 111261 | text: bibliography (REFER-format)
geo 102400 | binary: geophysical data

bookl | 768771 | text: novel—fiction

$From the vivid description you can imagine that we found out the hard way.

? Another solution would be to use the strict variant returnStrictlyST [7] in place of the original returnST. It also forces
all preceding operations to execute before it delivers any return value.

143

All times are “user times” and have been measured using the built-in command time of tcsh, version 6.04.00,
on a SPARCstation 10 with 32MB main memory (see Fig. 1). Each of these are median values over 10 runs
of the resp. program. The fractions given (speedup/slowdown factors) are computed from the numbers for
“paperl”. All Haskell-programs have been compiled using the Glasgow-Haskell-Compiler, version 0.23, the
C-program with gcc, version 2.6.3, all with optimization (option -0). Furthermore, in the lines marked

program \ input paperl | bib geo || x/lzwh | lzwh/x
compress 0.16 0.30 | 0.38 0.09 10.68
lzwe 0.18 031 —2 0.07 13.15
hez 3050 | 53.77 | 73.36 || 17.15 0.05
lzwh 1.711 3.30 | 4.30 1.00 1.00
lzw-trie 2.02 3.60 { 7.27 1.18 0.84
lzw-trie 26 MB heap 1.25 2.24 | 2.62 0.73 1.36
lzw-hash 1.20 260 26314 0.70 1.42
lzw-itl 17.28 31.35 | 42.28 | 10.11 0.09
lzw-it2 2.43 456 | 5.64 1.42 0.70
hscopy 0.45 688 | 0.85 0.26 3.80
ccopy 0.05 0.08 | 0.08 — —
pure-c 0.11 0.22 | 0.30

pure-hs 0.75 1.72 { 1.78

*The program lzwe does not terminate on input “geo”.

Figure 1: Runtimes in seconds.

with hscopy we have measured a Haskell program which only copies its input to ifs output and ccopy is
the corresponding C program (see below for more information). The line pure-c contains the difference of
compress and ccopy, the line pure-hs contains the difference of Izw-hash and hscopy. The I/O corrected
slowdown factor of Haskell wrt. C is therefore between 6 and 7.8.

The particularly bad performance of 1zw-it1 is due to the inefficient implementation of mutable variables
in ghe-0.23. The datatype employed in that encoding function is just the naive imperative transcription of
Sanders’ datatype:

data IPT s a b =
IPTempty |
IPT (IPTnode s a b) (IPTree s a b) (IPTree s a b)

data IPTnode s a b =
IPTnode a b (IPTree s a b)

type IPTree s a b = MutableVar s (IPT s a b)

Each mutable variable is implemented as a mutable array with exactly one element. Thus, instead of simply
using one additional reference cell, it needs memory for the (trivial) bounds of the array, too. Therefore,
allocating and initializing a single mutable variable mean allocating and initializing an mutable array with (at
least) three elements. Furthermore, each access to the variable is subjected to unnecessary bounds checks. In
lzw-it2 we have merely collected the three mutable variables into one mutable array, flattened (= removed)
the datatype IPTnode, and hardcoded the first character by using a mutable array of IPT2 s a b as root
table:

data IPT2 s a b =
IPT2empty |
IPT2node a b (IPTree2 s a b)

type IPTree2 s a b = MutArr s Int (IPT2 s a b)

144

Allocating a new node of the tree look like this

freshNode2ST k v tree idx =
newArr (0,2) IPT2empty ‘thenST‘ \ vec ->
writeArr tree idx (IPT2node k v vec)

as compared to the version using IPTnode:

freshNodeST k v tree =
newVar IPTempty ‘thenST‘ \ vi
newVar IPTempty ‘thenST‘ \ v2 ->
newVar IPTempty ‘thenST‘ \ v3 ->
writeVar tree (IPT (IPTnode k v vi) v2 v3)

U
v

Notice that small changes in coding eg the program lzw-trie can affect runtime and memory usage by
a factor of up to 4. To obtain good results intimate knowledge of the properties and inner workings of the
transformers is essential. You cannot willy-nilly throw in some state transformers and expect your program
to run fast.

As an example consider the function thenST, which performs sequential composition of two transformers,
ie it puts one transformer “behind” another. The point to notice with this composition is that it is lazy: in
an expression m ‘thenST* f the function £ (if it is not strict) can deliver a result even if m has not yet started
to execute!®. This happens in the expression returnST (code: morecode) in function enter. Here, a code
word is available as soon as it is generated; only further demand on the resulting list forces the computation
of morecode.

However, the delayed composition thenST is not really necessary for this program to run correctly. If
we replace thenST by its strict variant thenStrictlyST the programs runs faster by a factor of two. The
price is an increase in heap usage by a factor of four and an increase in stack usage (because some functions
are now strict) by factor of five (the program is executable in 5MB heap and 1MB stack). The reason is
that the complete list of code words is now constructed in function enter before the first code word appears
on the output. The remedy is to switch back to the lazy thenST at the place mentioned above: now lzw-
trie(paperl) runs in 2.66 seconds (in 8MB heap)—a slowdown by about 30%— and is executable in 5MB
heap and 200k stack.

A more dramatic change occurs in the version using the hash table. Using the lazy thenST it runs in just
200k of heap (but it takes 26 sec). With 4MB of heap 3.86 sec are necessary. The number in the table has
been measured with 8MB heap, 2MB stack, and strict thenStrictlyST.

In the version with the hash table, the choice of the hash function and the size of the hash table does
not influence the runtime significantly. The changes are in the range of 10%. All of the hash functions use
2-3 arithmetical operations, inspired by the implementation of compress.

Using staged arrays does not pay. All the results (time and space usage) get worse. None of the times in
Fig. 1 have been measured using staged arrays.

In order to document the asymptotic logarithmic runtime behavior of the program lzwh, we have per-
formed measurements with prefixes of different length of the text “bookl” (size 670k). It appears (cf. Fig. 2)
that the pure functional version performs surprisingly well in comparison to the imperative implementations
using tries and hash tables. All graphs look linear. The data for Izw-trie appears to get corrupted in the
last measurement. This effect is probably due to thrashing.

Finally, we should not ignore that the size of the heap has significant influence on the runtime of the
programs. For example, lzw-trie on “paperl” can be accelerated to run in 1.2 seconds, although at the
price of 26MB heap memory. Albeit interesting such a measurement is not realistic (yet?).

Enlarging the stack space has no influence on the runtime. The use of the strict thenStrictlyST is the
direct cause for the increase in stack space usage in our examples.

107f £ tries to execute an operation on mutable objects complete execution of m is forced.

145

30 T T T T T T T

25 lzwh ©— b
lzw-trie -+ - .
lzw-hash =—

20 =

seconds 15 |

10 +

0 1 H ! 1 1 1 H

0 100 200 300 400 500 600 700 800
size of input file/kb

Figure 2: Runtimes for prefixes of bookl.

7 Impact on Programming Style

It is quite hard to measure the change in programming style in the presence of laziliy mutable data. In
numbers, the core of Sanders’ purely functional implementation from [13] consists of 26 lines of code, while
the core of ours (the declaration of Table and VecTable and functions enter and encode) consists of 22
lines of code.

In the eyes the author, the program in the current text does not use any contorted constructions. The
only construction which could be more natural is the test on the contents of a variable, eg:

readVar tree ‘thenST‘ \ label ->
case label of ...

Here, SML’s syntax for lambda expressions would be more appropriate.

8 Haskell vs. C

In this section we briefly compare the performance of Haskell against the performance of C. This section
is somewhat outside of the scope of the paper which examines the benefits of using imperative extensions

provided in some dialects of Haskell. It is only included for completeness and for purposes of comparison
with Sanders’ work®?.

8.1 I/0

We have written two one-liner programs copy—a C program which copies standard input to standard output
using getchar and putchar—and hscopy—a Haskell program which does the same using readChan and
appenChan. Here is the result, again using gcc and ghe with optimization.

program | throughput | factor
(bytes/sec)

copy 1,830,407 14.28

hscopy 128,128

11 Besides my own curiousity, there is another reason which unfortunately escapes my mind temporarily.

146

Here is our prime suspect for the inefficiency of hscopy: the functions readChan and readFile both
“return” a value of type [Char], ie a lazy list of lazy characters. The list itself should of course be laszy,
but the characters should not be lazy! Why? Whenever a character is (physically) read by the system it is
immediately available. However, the elements of [Char] may not be available and must at least be boxed.
Therefore, the input function must box every character, and every function that uses such a character must
evaluate/unbox it again. What a useless effort! We suspect the boxing and unboxing operations to account
for most of the slowdown experienced in the comparison of copy and hscopy.

A nice solution would be to provide input functions which return lists of unboxed (or strict) characters
(ie of type [Char#] in GHC terminology), however, as unboxed data types are currently integrated in
Glasgow-Haskell polymorphic types cannot be instantiated with unboxed types [10].

8.2 Bit Operations

It was mentioned before that the lack of bitwise operation is one possible source of inefficiencies in the Haskell
program, compared to the C program. Bit operations are used in the C program to change the bitstream
output of the algorithm into an octet-stream. In the present case we only have to convert a stream of 12bit
integers into an octet-stream (see function recode, Sec. A).

In order to pinpoint the effect of the conversion on runtimes, we have conducted the following experiment:
in the fastest program lzw-hash we have substituted the function recode once by a function crunch which
eagerly devours its input list and returns a constant string, and also by a function c¢runchi which devours
its input list and returns a list of the same length as recode would have returned. The program lzw-hash*
uses the former, while lzw-hash# uses the latter to generate output.

crunch (n:ns) | n==n = c¢runch ns
| otherwise = "False"

crunch [J = "True"

crunchi (n:ns) = ’X’: crunch2 ns

crunchi {] ER

crunch2 (n:ns) = ’Y’:’Z’:crunchi ns

crunch2 [J = "y

The difference between lzw-hash and lzw-hash* is the time needed for the format conversion and output.
The difference between lzw-hash and lzw-hash# is the time needed for the bit operations. The same
inputs are used as before!2. Differences and ratios are computed used the “bib” column.

program \ input j| paperl | bib | geo || lzw-hash—x | x/lzw-hash
lzw-hash 1.30 2.80 | 2.95 || 0.00 1.00
lzw-hash* 1.10 2.36 | 2.19 | 0.44 0.82
lzw-hash# 1.20 2.55 | 2.49 |} 0.25 0.88

It can be seen from the table that the division and modulo operations from recode account for about 12%
of the total runtime. Furthermore, output appears to take 6-10%.

9 Conclusion
A number of conclusions can be drawn from this case study.

1. The purely-functional algorithm lzwh compares surprisingly well with the variants programmed in the
imperative style. Its runtime is only about 30% slower than the runtime of the fastest (imperative)

Haskell-program. This is not much in a time where your new computer runs 2—4 times faster than your
old one.

12The times for lzw-hash are not identical to the ones shown before, the measurements were done on a different machine.

147

2. The fastest among the Haskell programs is the implementation using the (mutable) hash table. It
cannot be beaten even under unrealistic circumstances (26MB heap).

3. However, lzw-hash is slower than a simple C-program, by a factor of 6.67.

This factor is still significant, but in the work of Sanders [13] three years ago the factor was still 20-30.
Convincing evidence for the rapid advance in compiler technology for functional languages.

4. Imperative algorithms can be formulated in Haskell in a clear, compact, and modular way. This
modularity (the algorithm itself, recoding the list of code words into a list of characters, and I/O are
separate parts of the program) is mainly achieved through lazy evaluation. The price to pay is some
decrease in efficiency.

Due to the latter fact, experiments with data structures (delayed arrays and staged arrays in our case)
can be performed in a short amount of time. Such experiments can be quite time consuming in other
languages.

5. Imperative extensions of Haskell should only be employed, if it really cannot be avoided. Making use
of them in a correct and efficient way requires some care, since the operations have subtle properties.

6. There are applications where imperative functional programming facilitates the implementation of
algorithms, which could not be realized before in pure functional languages (or not in bearable runtime).
These applications are in the areas of user interfaces, programming interaction, and interfacing the
operating system.

As an extension of the experiments reported here we could imagine the following points:
e An investigation of the space usage of all the programs is necessary.

¢ Implementation of one of the imperative (trie or hash table) algorithms where I/O is intermingled (as
in the C implementation) with the algorithm itself. In the current Haskell 1.3 I/O proposal all I/0O-
actions are caused through transformers on a special state (the “real world”). All of these transformers
are strict, since there is no point in delaying I/O-actions.

The resulting program is expected to be faster than the Haskell-programs discussed above and it will be
more economic in terms of space. However, its structure will be very similar to that of a conventional
C-program, and it must be asked where the advantage of using a functional language remains.

Thanks to Will Partain, who provided the programs from [13], and Michael Sperber for inspiring discus-
sions on the LZW-algorithm and on its implementation in Haskell. He still believes that Icon provides for

the most elegant implementation of LZW. Last not least, thanks to the referees who did a good job in a
short amount of time.

References

[1] Timothy C. Bell, Ian H. Witten, and J.G. Cleary. Modeling for text compression. ACM Computing
Surveys, 21(4):557-591, December 1989.

[2] The Calgary Text Compression Corpus. Available by ftp on ftp.cpsc.ucalgary.ca in
/pub/projects/text.compression.corpus/text.compression.corpus.tar.Z.

[3] Report on the programming language Haskell, a non-strict, purely functional language, version 1.2.
SIGPLAN Notices, 27(5):R1-R164, May 1992.

[4] John Hughes. Why functional programming matters. Computer Journal, 32(2):98-107, 1989.

[5] David J. King and John Launchbury. Structuring depth-first search algorithms in haskell. In Proc. 22nd

ACM Symposium on Principles of Programming Languages, San Francisco, CA, January 1995. ACM
Press.

148

(6] John Launchbury and Simon L. Peyton Jones. Lazy functional state threads. In Proc. of the ACM SIG-
PLAN ’94 Conference on Programming Language Design and Implementation, pages 24-35, Orlando,
Fla, USA, June 1994. ACM Press. ACM SIPLAN Notices, v29, 6.

[7] John Launchbury and Simon L. Peyton Jones. State in haskell. Lisp and Symbolic Computation, 1995.
to appear.

[8] Will Partain. Compression programs, February 1994. electronic mail.

[9] Simon L Peyton Jones, Cordelia Hall, Kevin Hammond, Will Partain, and Philip Wadler. The Glasgow
Haskell compiler: a technical overview. In Proceedings of the UK Joint Framework for Information
Technology (JFIT) Technical Conference, Keele, 1993.

[10] Simon L. Peyton Jones and John Launchbury. Unboxed values as first class citizens in a non-strict
functional language. In John Hughes, editor, Proc. Functional Programming Languages and Computer
Architecture 1991, pages 636-666, Cambridge, MA, 1991. Springer-Verlag. LNCS 523.

[11] Simon L. Peyton Jones and Philip L. Wadler. Imperative functional programming. In Proc. 20th ACM

Symposium on Principles of Programming Languages, pages 71-84, Charleston, South Carolina, January
1993. ACM Press.

[12] Carl Ponder, Patrick McGeer, and Antony Ng. Are applicative languages inefficient? SIGPLAN Notices,
23(6):x, 1988.

[13] Paul Sanders and Colin Runciman. LZW text compression in Haskell. In John Launchbury and
Patrick M. Sansom, editors, Proc. of the 1992 Glasgow Workshop on Functional Programming, pages
215-226, Ayr, Scotland, August 1992. Springer-Verlag, Berlin.

(14] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146—
160, 1972.

[15] Peter Thiemann. Safe sequencing of assignments in purely functional programming languages. Technical
Report WSI-93-16, Wilhelm-Schickard-Institut, Tubingen, Germany, November 1993.

[16] Peter Thiemann. Terminated references and automatic parallelization for state transformers. In Uday S.
Reddy, editor, ACM SIGPLAN Workshop on State in Programming Languages, San Francisco, CA,
January 1995. University of Illinois.

[17] Terry A. Welch. A technique for high-performance data compression. IEEE Computer, 17(6):8~19, June
1984.

[18] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, IT-23(3):337-343, May 1977.

A Changing the Format

Output is produced in pieces of 12 bit each. Other implementations start with pieces of 9 bit and increase
the length (on demand) up to 12 bit. Furthermore it is checked (eg by compress) whether the rate of
compression decreases. If it does so significantly, the hitherto constructed table is dismissed and a new table
1s constructed, starting out from the empty table again.

The following function recode transforms a list of 12 bit Code words in a list of 8 bit Byte.

> recode (n:ns) = chr (n ‘mod‘ 256): recodei (n ‘div‘ 256) ns
> recode [] = "

> recodel b (n:ns)
> recodel b []

chr (b + 16 * (n ‘mod® 16)): chr (n ‘div‘ 16): recode ns
[chr bl

... and vice verse:

149

> ercode (b1:b2:bs) = (ord bl + 256 * (ord b2 ‘mod‘ 16)): ercodel (ord b2 ‘div’ 16) bs
> ercode [] 0

> ercodel i (b2:bs) (i + 16 * ord b2): ercode bs
> ercodel i [] =[]

B Main Program

The main function, processing the parameters, input and output redirection.

> main = getArgs exit checkArgs

> checkArgs (“-d": rest) = checkFile doDecode rest

> checkArgs (“-e": rest) = checkFile doEncode rest

> checkArgs _ = getProgName

> (_ -> appendChan stdout (usage “checkArgs") exit done)
> (\ str -> appendChan stdout (usage str) exit dome)

> usage name = “Usage: " ++ name ++ " (-d|-e) [inputFile [outputFilell\n"

> checkFile :: (String -> String) -> [String] -> Dialogue

> checkFile proc [= readChan stdin exit (checkOutputFile proc [J)
> checkFile proc (inFile: rest) = readFile inFile exit (checkOutputFile proc rest)

> checkOutputFile proc [] str = appendChan stdout (proc str) exit done
> checkQutputFile proc (outFile: rest) str = writeFile outFile (proc str) exit done

> doDecode codestring = runST (decode codestring) “*

> doEncode bytestring = recode (runST (encode bytestring))

C Representation of the Coding/Decoding Arrays

> newEncodeArray :2 (Int,Int) -> b => ST s (EncodeArray s b)
> newEncodeArraylazily :: (Int,Int) -> b -> ST s (EncodeArray s b)
> readEncodelArray :: EncodeArray s b -> Int -> ST s b

> writeEncodeArray :: EncodeArray s b -> Int => b => ST s ()

> type EncodeArray s b = MutArr s Int b

> newEncodeirray = newArray

> newEncodeArrayLazily = newArrLazily

> readEncodedArray = readArray

> writeEncodeArray = wgriteArray

v

newDecodeArray :: Int -> b -> ST s (DecodeArray s b)
readDecodeArray :: DecodeArray s b -> Int -> ST s b
> writeDecodeArray :: DecodedArray s b => Int -> b -> ST s ()

v

> type DecodeArray s b.= MutArr s Int b
> newDecodeAxray hi = newArray (0, hi)
> readDecodedrray = readArray

> writeDecodeArray = writeArray

150

Writing Monads which Manipulate State

Jan-Willem Maessen™

Abstract

More and more, Haskell compilers are offering some form of
monadic state manipulation. However, the interfaces to such
stateful features as [-structures and M-structures is hardly
standardized, and smaller systems (such as Gofer) which are
convenient to use for development do not offer imperative
features at all. This paper discusses one approach to devel-
oping code for two quite different Haskell systems. The first
is MacGofer, the well-known Haskell-like interpreter for the
Macintosh. The second is parallel Haskell (pH), an eagerly-
evaluated, implicitly-parallel dialect of Haskell under devel-
opment at MIT. The techniques used promise to be useful
to others; they also provide a case study in the usefulness of
certain extensions to the current Haskell language.

1 Introduction

In recent years, the monadic programming style has taken
hold among Haskell programmers. Originally envisioned as
a mathematical encapsulation mechanism for semantics of
computations [8], monads turn out to be very useful for
structuring the computations themselves, particularly when
they involve the manipulation of state. 1/O [3, 10} and mu-
table storage [6] can both be implemented safely in Haskell
compilers with the appropriate libraries and extensions to
the type system.

The intention of this paper is not to propose any radical
new monadic extensions to Haskell. Instead, it will examine
how the Haskell programmer can make use of various lan-
guage mechanisms (some of them nonstandard, but none of
them new) to implement data structures in a monadic style.
This paper uses the example of function memoization, where
an obvious fully-functional implementation is much less ef-
ficient than one making use of a mutable data structure.
In developing the system, it proved useful to break it into
subproblems, and solve each using a monad. The original
goal of the endeavor was to produce code which would work
on in two very different implementations of Haskell-like lan-
guages. The final target, parallel Haskell (pH), is an implic-
itly parallel, eagerly-evaluated dialect of Haskell{9]. How-

*MIT Computation Structures Group, jmaessen@mit.edu. The au-
thor is supported in part by an NSF Graduate Fellowship.

151

class Monad m where
(>>=) :ma->(a->nb) ~>nb
return :: a => m a

Figure 1: The monadic operations

ever, code was being developed and run on a Macintosh
using MacGofer{4], which is sequentially evaluated and con-
tains no imperative extensions at all (and uses the older
stream-based I/O model). Writing code which rumns cleanly
on such different platforms stretches the limits of Haskell’s
type system, and as such offers an interesting case study in
what Haskell (and the Haskell programmer) can and ought
to do. Thus, the ultimate goal of this paper is mot merely
to discuss a particular style of Haskell coding, but also en-
courage adoption of existing language extensions which will
support this style.

2 Preliminaries

A few notes about pH will be neccessary before jumping into
the paper proper. pH is eagerly evaluated. Roughly speak-
ing, this means that every expression will be evaluated (as
in a call by value language), but that non-strict dependen-
cies in the program code are allowed. The practical upshot
is that we must ezplicitly create thunks—if we don’t wish
a particular object to be evaluated, we must turn it into
a function. Thus, the following two snippets of code have
different meanings in pH:

£ = (_ -> hairyComputation)
g = let value = hairyComputation in (_ -> value)

Here g will always perform hairyComputation, regardless of
whether g is ever applied; £, on the other hand, will per-
form hairyComputation every single time it is applied. The
explicit creation of thunks will be most evident when we
look at types; often we will write () -> Type where most
Haskell programmers would simply use Type.

Since this paper will be talking extensively about mon-
ads, it is seems fitting to begin with a quick definition of
monadic operations. A certain familiarity with monadic
code has been assumed in this paper; this presentation there-
fore focuses on the notation used, which is summarized in
figure 1. In general, we can read the monadic typen a as

transClosure dag = transNodes dag
where

transNode :: DAGNode a -> [DAGNode a]
transBode (DAGHode a children) =

DAGNode a newchildren : newchildren

where newchildren = transNodes children
transNodes :: DAG a ~> [DAGEode a]
transBodes dag = foldl unionList [
(map transNode dag)

Figure 2: A naive implementation of transitive closure

“a computation in the monad m returning a value of type
a.” A monad has two fundamental operations. The expres-
sion return v yields a computation returning value v. The
operator (>>=) obtains the result from its left-hand compu-
tation and passes it as an argument to the function on the
right-hand side, which in turn returns another computation.
The two computations are combined in some manner, con-
strained by the following identities:

unit a >>=f = f a x >>= return = x
x>»= (Na->fad>=g)=1(x>=\a->fa)d>=g

The astute reader will have noticed the use of type con-
structor classes in the definition of Monads[5]. In the sys-
tems being used we can get away with this, since both Gofer
and pH provide constructor classes. For the moment, they
will simply be a notational convenience; the same monadic
notation is used for all the monads defined. This helps em-
phasize their similarities. Later, constructor classes will be
put to heavier use in some “what-if” thought experiments.

Finally, the monad types which are used in this presen-
tation are often unwieldy, containing as many as four free
type variables at a time. To help keep things somewhat
more clear, the following notation is used:

s represents the type of the “state” of an underlying state
transformer monad (more on this later).

v represents the type of the value returned when the monad’s
computation is performed, if this type is distinct from
the others.

a, b, ¢ represent other type variables, whose meaning is
given by context.

3 The problem

Let us attempt to solve a fairly simple problem: Given a di-
rected acyclic graph, define a function transClosure which
computes the transitive closure of its input (the list of nodes
reachable from the root set of the given graph):

transClosure :: Hashable a => DAG a -> [DAGNode a]

A DAGNode is some data (with type a) and a list of nodes to
which the given node is connected.

data Eq a => DAGNode a = DAGNode a (DAG a)
type Eq a => DAG a = [DAGNode a]

We can define a notion of equality among nodes, assuming
that every DAGNode has a unique set of data {perhaps the
data includes a distinguishing tag, for example):

152

instance Eq a => Eq (DAGNode a) where
(DAGNode a _) == (DAGNode b _) = a ==

Also defined is a notion of hashing a graph node; the func-
tion hash takes a hashable object and returns an integer:

instance Hashable a => Hashable (DAGNode a) where
hash (DAGNode a _) = hash a

We make use of hashability in our implementation to keep
track of visited nodes.

The most obvious implementation of transClosure, shown
in figure 2, is poor at best: This version of countNodes com-
pletely ignores any sharing. For example, consider the fol-
lowing:

a = DAGNode aData [b,c] -- a a
- /\ / \
b = DAGNode bData [c] - | b => ¢ b
- \/ /
¢ = DAGNode bData [] - ¢ c

aTrans = transClosure [a]

As written, aTrans will compute transClosure c twice, lead-
ing to loss of sharing in the resulting graph (not to men-
tion lost performance through repeated computation). We
would like to provide some means of memoizing the results
of transNode so that each node in the graph is closed over
exactly once.

One way of memoizing calls to transNode would be to in-
troduce an explicit data structure which is threaded through
all of the recursive calls to transClosure. There are a num-
ber of objections to doing so directly, however. First, by
threading a data structure through the computation it is
Lkely that the entire graph structure will need to be evalu-
ated before any part of the final answer can be examined.
Just as important, the eventual goal is to produce a parallel
implementation of the algorithm; with computation forced
to wait for the threaded data structure, not much can be
going on at any one time. Finally, the mechanics of how
the data structure is threaded through the computation are
likely to change if the data structure is changed, requiring
extensive modifications to the structure of the algorithm it-
self.

4 A memoization monad

A monadic implementation addresses all three of these con-
cerns by hiding the necessary data structures and the man-
ner in which those data structures are accessed. We can use
the code in figure 3. This code assumes the existence of a
memoization type of the following form:

MemoizingComp s a b v

Intuitively, this memoizes a function of type a~>b, and makes
use of some internal state s.

The code as written implies several things. First, a given
instance of the memoization monad only memoizes calls to
a single function. Why? Purely functional implementations
of Haskell have no notion of mutable state. This means that
such state must be represented explicitly within the monad.
As a result, only a bounded number of types could be mem-
oized directly in such an implementation. This apparent
expressive difficulty will be explored later.

Second, an instance of the memoization monad is given
the function memoized only once, in the following code:

type ClosureComp s a =
MemoizingComp s (DAGKNode a) [DAGKode a] [DAGHode a]
transClosure dag =
memoizing canonicalSize
{function = translode;
computation = transBodes dag}
where transNode :: DAGHode a -> ClosureComp s a
trans§ode (DAGHode a children) =
transNodes children >>= \newchildren ->
return (DAGNode a newchildren : newchildren)
transNodes :: [DAGHode a] -> ClosureComp s a
trans¥odes nodes = foldl combineNodes (return [})
(map memo nodes)
ClosureComp s a ->
ClosureComp s a —>
ClosureComp s a
combineNodes nodesi nodes2 =
nodesl >>= \nodesiclose ->
nodes2 >>= \nodes2close ->
return (unionList nodesiclose nodes2close)

combineNodes ::

Figure 3: A memoizing implementation of transitive closure

memoizing canonicalSize
{function = transNode;
computation = transNodes dag}

While at first glance this may look similar to the previous
decision, it is actually entirely orthogonal; we can imagine
allowing numerous functions to be memoized, but still as-
sociating a function specifically with its tabulated results.
By suppliying the function exactly once, we guarantee that
the results of a “memoized call” actually correspond to the
results of the function we wanted to compute.

It is worth emphasizing here that @ memoizingComp is not
itself a memoized function. Instead, it represents a piece of
computation for which we want to maintain memoization
information for a particular function. The actual memoized
function is invoked by a call to memo.

We thus define the a type for memoizing computations
as follows:

> data (Hashable a) => MemoizingComp s a b v =
> MC ((a -> MemoizingComp s a b b) ->
> HashTableComp s a b v)

For our memoization computation, we really just want to
maintain a data structure which will associate each argu-
ment of type a with a result of type b. We represent this
as a HashTableComp, and defer its precise description un-
til later. We want to pass along the (fixed) function being
memoized as we perform computation.

Note the rather odd type for the function being memo-
ized:

a ~> MemoizingComp s a b b

Instead of returning a simple value, we assume that the func-
tion memoized itself returns a computation! Note that the
function we wish to memoize, transNode, is recursive. In
order to memoize these recursive calls, we need to perform
them as memoizing computations. Since we want the re-
sults of such memoized calls to be propagated everywhere,
transNode returns a computation.

This points up a general principle of programming with
monads:

153

Function arguments should return computations.

While in general we may not need this power, it is quite easy
to wrap a call to return around a function’s vahue, whereas
it is completely impossible to insert a computation where
it was not expected. Following this principle makes recur-
sion among computations much easier and more mnatural to
express.

Memoizing computations simply propagate the function
being memoized to sub-computations, and “plumb together”
the hash table computations which result:

> instance Monad MemoizingComp s a b where

> (MC m1) >>= fm2 =
> MC (\f -> (m1 £) >>= \rt1 ->
> let MC m2 = fm2 r1 in m2 f)

If a value is simply being returned, we ignore the functéon
being memoized and simply return a hash table computation
yielding the appropriate value:

> return v = MC (const (return v))
We still need to define how to call the memoized function:

> memo :: Hashable a => a ~> MemoizingComp s ab b

That is, whenever we want to call the function being memo-
ized, we simply write memo instead of the function’s original
name. The implementation of memo assumes the existence
of a single hash table operation, lookupInsertHash:

> memo argument =
> HMC (\f -> lookupInsertHash argument

When the lookup fails to find a memoized result, we must
provide a thunk to compute an appropriate value;
loockupInsertHash will then memoize and returmx it:

> A=
> let (MC fHashComp) = f argument
> in fHashComp £f))

Here, the memoizing computation (MC fHashComp) is ex-
plicitly converted into a HashTableComp by applying it to £.
In effect, we are taking a function, £, returning a value in
one monad (MemoizingComp 3 a b) and using it to create
a function (the thunk) returning a value in another monad
(HashTableComp s a b). This must be part of the imple-
mentation of memoizing computations, since it reqquires knowl-
edge of the internal structure of MemoizingComp.

The loookupInsertHashfunction looks its first argument
up in the hash table, and returns the value of the resulting
entry if one exists. If there is no entry, one is created con-
taining the value of the thunk passed as an argurment. Here
we see a case where pH differs from Haskell. In Haskell, we
could simply provide the value directly, and rely on laziness
to gaurantee that this value is not computed unless it is nec-
essary. Eager evaluation forces us to explicitly build thunks
to do so. Thus, we know that lockupInsertiash has the
following type:

lookupInsertHash :: Hashable a =>
a -> ({) -> HashTableComp s a b b)
-> HashTableComp s a b b

One function remains to be defined, and this is where the
problems really occur. We would like to design a function
something like:

remembering function (MC computation) =
compute (computation function)
run the resulting HashTableComp to obtain an answer.

The problem is that our eventual implementation is going to
want to manipulate mutable state using a state transformer.
In order to evaluated such a computation safely, a function
of the following form must be used[6}:

TunST :: Vu. (Vs.ST sv) => v

State transformer computations need to be universally quan-
tified over their state type, s. In order to ensure this quan-
tification, we are forced to bring s in to all computations
which make use of state, and to enforce the same quantifi-
cation rules for them as well.

Unfortunately, Haskell itself does not provide any sup-
port for local quantification of type variables. Rather than
reject a “stateful” approach out of hand, or even settle for
unsafe features, we make use of a proposed record extension
which provides exactly the facilities we need. We will create
a “wrapper” record which expresses the type relationships
for memoizing computations:

> data Hashable a => MemoWrapper a b v =
> { function :: a -> MemoizingComp s a b b;
> memoComputation :: MemoizingComp s a b v }

Here the type of the state, s, is not a parameter of the wrap-
per type. The rules for the record system state that such
type variables must be universally quantified; records are
typechecked as if they were let blocks. Two accessor func-
tions, function and memoComputation, are defined by the
compiler. Thus, a new language feature—named records—
enables us to solve an existing problem that would otherwise
have required special modifications to the type checker.[1]
The function memoizing actually evaluates a wrapped-up
computation:

> memoizing :: Hashable a =>

> Int -> MemoWrapper a bv -> v
> memoizing size wrapper =
> withHash size { hashComputation = comp f }

> vhere (MC comp) = memoComputation wrapper
> £ = function wrapper

Note that a similar argument applies to HashTableComps as
well, so a similar wrapper record has been defined for them.

Having shown how useful record types are for describ-
ing wrappers such as memoizing, it is worth discussing their
downside—that they remain unimplemented on one of the
two systems (Gofer) for which we are trying to write code!!
This means that the relevant code will need to be rewritten—
both memoizing and transClosure. Luckily, the striking
(and purposeful) similarity between records and let blocks
comes to our rescue:

transClosure dag =
memoizing canonicalSize
let {function = transNode;

1Ironically, Lennart Augustsson credits Mark Jones for the record
system upon which the one in pH is based—it simply does not appear
in any of the versions of Gofer I used.

154

computation = transFodes dag}
in (function, computation))
shere ... -~ as before

This is, roughly speaking, the translation which would be
performed by the type checker on record types anyway;
we’ve simply lost the local quantification of state. However,
we are not using state transformers in this particul ar system,
and thus this does not hurt us in practice. We can rewrite
memoizing as follows (the original structure is preserved for
comparison):

data MemoWrapper s a b v = -

(a -> MemoizingComp s a b b,

MemoizingComp s a b v)

memoizing :: Hashable a =>

Int -> MemoWrapper s a bv -> v -k
memoizing size wrapper =

withHash size

let { hashComputation = comp £ }

in hashComputation - %
vhere (MC comp) = memoComputation wrappex
£ = function wrapper
function = fst -—x
memoComputation = snd - %

Nevertheless, while the rewriting needed is simple, it would
be nicer if it were nonexistent. This will require one of two
changes: either introduce local universal quantification of
types separately into Haskell (this could become wvery cum-
bersome indeed!), or implement more widespread support
for a record system such as this which includes such types
for free. Regardless of which course is taken, it is absolutely
clear that support for local quantification is needed to make
state-manipulating programs run safely.

5 Hash Tables

The implementation of memoization was very brief—if the
code were consolidated, it would fit on half a sheet of paper.
Moreover, the code for both Gofer and pH was similar—
modulo the need for local quantification in the pH code.
This is hardly surprising, however, since the Hemo izingComp
monad does very little actual work. The difficult job is ac-
tually implementing an updatable hash table in & monad.

In Gofer, we make use of an IntMap to store the hash
table, updating the structure incrementally each time a new
entry is created (figure 4). Note that the current value of
the hash table is threaded through the computations in >>=
from left to right. We could just as easily have threaded it
through in the opposite direction instead, giving the follow-
ing alternative definition of >>=:

(HT h1) >>= fht =
HT \table->
let (tablei, hires) = hi table2
(HT h2) = fht hires
(table2, h2res) = h2 table
in (tablei, h2res))

In fact, when testing higher-level code which will later be
run in parallel, it is useful to try both definitions of >>=—
the result returned by the program should be exactly the
same in either case. Indeed, it is possible (though tedious)
to write a version of the hashTableComp monad which tries
every possible permutation of the orders of >>= operations

module HashTable(withHash, getHash, lookupInsertHash, stToHash, HashTableComp) where
import Monad

type Hashable a => HashTable a b = IntMap [(a,b)]

data Hashable a => HashTableComp s a b v =
HT (HashTable a b -> (HashTable a b, v))

instance Monad (HashTableComp s a b) where
(HT h1) >>= fht = HT (\table->
let (table’, hires) = hl table
(HT h2) = fht hires
in h2 table’)
return v = HT (\t -> (t,v))

vithHash :: (Hashable a) => Int -> HashTableComp s a b v => v
withHash size hc =

snd (comp emptyMap)
where HC comp = hc

lookupInsertHash :

(Hashable a) => a => (() -> HashTableComp s a b b) -> HashTableComp sabb
lookuplInsertHash element valueThunk =
HT \table ->
case lookupMap table elementHash of
Nothing ~> newEntry insertMap [] table
Just entries -> case lookupAssoc entries element of
Nothing -> newEntry replaceMap entries table
Just value -> (table, value)
vhere elementHash = hash element
newEntry modification entries table = ret
vhere HT valueComp = valueThunk()
ret@(table2, value) = valueComp tablel
table!l = modification table elementHash [{element, value)]

Figure 4: An implementation of the HashTableComp monad in Gofer

A58

in the program. This could be used to exhaustively verify
correctness and determinacy if desired.

Many of the notes and caveats which have been dis-
cussed for MemoizingComps also apply to HashTableComps.
We have already mentioned that different versions of the
withHash function are neccessary under Gofer and pH; sim-
ilarly, the use of a thunk returning a computation as an
argument to lookupInsertHash follows the practices we’ve
seen so far. Once again, for the sake of type uniformity
in the Gofer version, only a single hash table is actually
represented by the monad. And once again, the function
lookupInsertHash takes a function returning a computa-
tion rather than a value.]

The pH implementation simply uses an MVector to rep-
resent the hash table (figure 5). An MVector is a reference
to a chunk of mutable storage which is indexed from 0.2
MVectors can only be manipulated by state transformer op-
erations. It is for this reason, and this reason alone, that we
needed to introduce the type of the state, s, into all of our
monads thus far:

data ST s a
data MVector s a

instance Monad (ST s)

data Wrapper a = {computation ::
statefully :: Wrapper a -> a

ST s a}

Here, the function runST discussed above and in {6] has been
replaced by the function statefully, which takes a Wrapper
record and performs the computation it contains. In this
way, a state transformer computation can be run safely with-
out further extending the type system beyond adding record
types.

Two functions are used to create and manipulate MVectors.
The expression makeMVector size [], in withHash, returns
a computation which creates a new MVector of size size
{meaning its maximum index is size-1), all of whose ele-
ments are initialized to []. Thus makeMVector has the fol-
lowing type:

makeMVector :: Int -> a -> ST s (MVector s a)

The function mVModify is used to atomically modify the
value of an element of an MVector. Its arguments are a
vector, an index, and a function. The function has the fol-
lowing type:

a -> ST s (a,b)

That is, it takes as an argument the current value of the
appropriate element of the vector, and yields a computation
which computes both a new value for that element and a
result. The computation has one contraint: at no time can
the same element of the vector be accessed via a nested call
to mVModify. That is, the vector element “vanishes” when it
is in the process of being modified. This is because there is
no particular ordering (beyond data dependency) in which
mnVModify operations occur. Thus, in order to guarantee that
the value seen is the most recent one, we provide an atomic
fetch-compute-store operation:

mVModify ::
MVector s a => Int => (a -> ST s (a,b)) ->
ST s b

156

class Monad m => FixMonad m where
fixMonad :: (v ->mv) ->m v

instance FixMonad (HashTableComp 8 a b) vhere
fixMonad £ = HT (\size table ->
let (HT comp) = f res
res = comp size table
in res)

instance FixMonad (MemoizingComp 8 a b) where
fixMonad £ = MC (\function ->
let (MC comp) = f res
res = comp funct ion
in res)

Figure 6: Monadic fixed points

Sometimes, however, we need to perform some computa-
tion which depends non-strictly on the result of fuaxrther calls
to mVModify. In the case of lookupInsertHash, each hash
table entry is a list of objects and values which hashed to
that slot in the table. When an entry for an object does not
exist, one is created inside the call to mVModify:

let lookup = lookupAssoc entries element
newvalue =
case lookup of
Nothing -> (element, returnedValue) :entries
Just _ -> entries
in return (newvalue, lookup))

The actual value is computed outside the call, however—the
function being memoized can call itself recursively, and if
one of the recursive calls causes a collision in the hhash table,
the recursive call to mVModify will deadlock unless we can
insure that the original call to mVModify has completed:

case lookup of
Nothing -> makevalue size table
Just value ~> return value

Getting this to work requires the function fixMomnad which
feeds the value of a monadic computation back as an input
to that computation. Not every monad bhas a fixed point
operation fixMonad; the exact implementation depends on
the monad itself. For example, both of the monads described
in this paper have a valid definition for fixMonad as shown
in figure 6. For lookupInsertHash, the call to fixMonad
simply feeds the result of the above expression back to the
call to mVModify so that the value can be added to the hash
table if necessary.

6 Related Work

The problem which provided the inspiration for the exam-
ple in this paper was originally an assignment irx Arvind’s
dataflow course. The monadic features of pH are distinctly
ad hoc, and exist in a seperate library from mwuch of the
rest of the language. They are coded using the better-
documented I-structures and M-structures of pH itself[9].

2Note that MVectors are less general than Haskell arrays in this
respect; implementing a type MArray(with general indexing) in terms
of MVector, or vice versa, is trivial.

module HashTable(withHash, getHash, lookupInsertHash, stToHash, HashTableComp) where
import Monad

data (Hashable a) => HashTableComp s a b v =
HT (Int -> MVector s [(a,b)] -> ST s v)

instance Monad (HashTableComp s a b) where
(HT h1) >>= fht = HT (\size table->
let (HT h2) = fht (hl size table)
in h2 size table)
return v = HT (_ _ -> v)

data HashWrapper a b v = { hashComputation :: HashTableComp s a b v }

vithHash :: (Hashable a) => Int ~> HashWrapper a b v -> v
withHash size hc =
statefully {computation = mVector size [] >>= (\table -> comp size table)}
vhere HT comp = hashComputation hc

lookupInsertHash ::
(Hashable a) => a -> ({) -> HashTableComp 3 a b b) -> HashTableComps a b b
lookupInsertHash element valueThunk =
HT \size table ->
fixMonad \returnedValue ~>
mVModify table (elementHash ‘mod‘ size) $ (\entries ->
let lookup = lookupAssoc entries element
newvalue =
case lookup of
Nothing -> (element, returnedValue):entries
Just . -> entries
in return (newvalue, lookup))
>>= \lookup ->
case loockup of
Nothing -> makevalue size table
Just value -> return value
vhere elementHash = hash element

Figure 5: An implementation of the HashTableComp monad in pH

157

Some of the features described in this paper—particularly
the record system—only exist in preliminary form at the
moment.[1]

Over the past few years, a tremendous number of pa-
pers have appeared describing various uses for monads in
functional programming. Wadler’s paper on monad com-
prehensions [13] is seminal in this area. A large body of
papers describe the use of monadic code to describe impure
language features, including [/O[10, 6], mutable storage[6],
and data parallelism[2]. The techniques of Launchbury and
Peyton Jones[6] have been influential in developing the un-
derlying pH state transformer, especially in using free type
variables and local quantification to delimit the validity of
mutable references.

While a large informal body of knowledge about various
monadic programming techniques (as opposed to language
features discussed above) seems to exist, this author knows
of very few written examples. Those which do exist and are
well known include the work of Wadler[12], Steele[11], and
Liang et. al.[7] in using monads to structure interpreters.
The latter, in which monads are layered on top of one an-
other as just as they are in this work, is most relevant for cur-
rent purposes. Some important differences exist, of course.
Constructor classes are used far more heavily to define the
various entities involved. The paper describes layering mon-
ads systematically—that is, every monad transformer is pa-
rameterized with respect to some underlying monad in terms
of which it is implemented, and what matters is not what
monad i3 used, but rather what functionality is provided.
This distinction is important, and is the initial subject of
the next section.

7 Challenges and Future Work

What we want out of a memoizing computation is really just
the functionality of memo. Realizing this, we could simply
define a type class which provides this functionality:

class MemoizingComp m where
memo ita->mabbd

We can then define the version of memoization discussed
here:

data (Hashable a, HashTableComp h) =>
MyMemo h ab v =
MC ((a->MyMemo h ab b) => h a b v)

instance HashTableComp h =>
MemoizingComp (MyMemo h) where
memo ...

Note that this approach gets rid of the extra type variable
s when it is not needed by any of the underlying monads
(definitely a win in Gofer!). The types discussed in this
paper might end up being written:

type GoferMemoComp a b v =
MyMemo GoferHashComp a b v
type PHMemoComp s ab v =
MyMemo (PHHashComp (ST s)) a b v

There’s one problem here: we’ve said nothing about the fact
that MemoizingComp must be a monad! There’s no way to
write:

class Monad (m a b) =>
MemoizingComp m where

158

There is undoubtedly an approach which is better than this
and which will work to capture the notion that a
MemoizingComp must instantiate to a monad.

The possibility of requiring a particular functionality for
a given computation also means that we can write monads
which provide several functionalities at once. The simplest
imaginable way of doing so is to open up certain aspects of
the underlying monads so that they are visible in the monad
actually being used. For example, we can imagine providing
“hooks” in any monad using a state transformer, so that
the underlying state transformer can also be accessed. This
might look something like the following:

instance StateTransformer st,
HashTableComp h =>
StateTransformer h (st s) where ...

Some readers have probably noticed with alarm the com-
plexity of the types involved in this paper. Each of our mon-
ads has no less than three free type variables! This seems
to be a problem in general with monadic code when it is
written in a general style. When we use a monad, we will
want to instantiate its type to the type at which we actually
plan on using it; for example, this declaration was found at
the beginning of the memoized version of transClosure:

type ClosureComp s a =
MemoizingComp s (DAGNode a) [DAGNode a] [DAGEode al

Of course, we’d like to spend most of our time writing use-
ful computations like transClosure, and not designing the
infrastructure allowing us to support them. So perhaps we
should be willing to concede that huge types are a necces-
sary evil when we are writing the monadic infrastructure we
use. Nonetheless, there are some possible ways to make the
techniques less opaque. For example, it might imnake more
sense to parameterize MemoizingComp with a function type,
as follows:

data NewMemoComp s f r =
MC ((a => NewMemoComp s (a=->b) b) ->
HashTableComp s a b r)
:: NewMemoComp s (a->b) r

Here the data constructor MC has been given an explicit re-
turn value; thus, there will be no way to meaningfully con-
struct a MemoComp which isn’t parameterized by a function
type.

Even more worrisome than the exploding sizes of types
is the enormous number of data constructors introduced by
monadic code. It would be nice to be able to define a monad
like MemoizingComp without an explicit constructor:

type MemoizingComp s a b v =
(a -> MemoizingComp s a b v) ->
HashTableComp s a b b

Unfortunately, Haskell does not permit us to give an in-
stance declaration for Monad MemoizingComp. The use of
abstype declarations in place of the data declarations used
in this paper make the types involved semantically equiv-
alent; nonetheless, the syntactic “noise” introduced by the
data constructor remains.

Finally, a plea which is perhaps more farfetched. Earlier
in this paper, it was noted that the State Transformer monad
was special, in that it separated the type of mutable state
(associated with the reference to that state, e.g. MVector

s a) from the state itself (propagated implicitly through-
out state transformer computations). There is no way to
do this for an arbitrary type without using state transform-
ers! If there were, monads could provide many instances of
the state they encapsulate, each instance at a different type.
The problem is similar to the one of dynamic typing; how-
ever, it is possible that by limiting type information solely
to references, such references will be typable at compile time
and things will still work nicely. Finding a general solution
to the problem will, for example, permit a type-correct im-
plementation of the state transformer monad entirely within
the functional part of Haskell.

8 Conclusion

This paper has explored some of the issues involved in writ-
ing monadic code, with the idea that such code can be
made fairly portable between different versions of Haskell.
Several pointers for other programmers can be observed in
this experience. First, abstraction is as useful with state-
manipulating code as it is elsewhere. Of course, this ought
to have been obvious beforehand! More useful are the de-
sign principles employed. When writing monadic code, it
is important to identify features (such as the function being
memoized in a MemoizingComp) which ought to be fixed, and
therefore encapsulated by the monadic computation itself.
Higher-order functions used in a monad should themselves
return computations in that monad; this permits such func-
tions to perform additional manipulations based on their
arguments.

Actually sitting down and trying to write monadic code
also leads to some observations about various features of
Haskell itself. Type constructor classes already provide a
crucial degree of flexibility in Haskell implementations which
support them (and most do). Abstract type declarations
would make them even more useful and cut down on syn-
tactic “noise” in programs. Finally, record types or some
equivalent system for obtaining local quantification of types
will be essential in writing extensible monads which manip-
ulate mutable storage.

Finally, this paper has focused on monadic programming,
but it should be stressed that monads are not The Answer.
Even when written carefully and systematically, monadic
programming tends to be tedious and error-prone. While
most of these errors are caught by the type checker, the
fact remins that monads are probably best avoided in most
code. It will doubtless become clearer with the passage of
time when and how monadic code ought to be used. It
is clear that when used carefully, a monadic coding style
can simplify and streamline writing code which manipulates
mutable storage.

References

[1] Lennart Augustsson. Record types in the hbec com-
piler. Personal communication with the author, April
1995.

[2] Keith Clarke and Jonathan M D Hill. Parallel haskell:
The vectorization monad. Look me up.

[3] Kevin Hammond, et. al. Report on the programming
language haskell, version 1.3. To be released at FPCA
’95, 1995.

159

[4] Mark Jones. Gofer language manual. No formal refer-
ence known.

(5] Mark Jones. Type constructor classes. In Proceedings
of the 6th ACM Conference on Functional Programming
Languages and Computer Architecture, 1993.

{6] John Launchbury and Simon L Peyton Jonmes. Lazy
functional state threads. In Proceedings of the ACM
Conference on Programming Language Design and Im-
plementation, pages 24-35. ACM SIGPLAN Notices,
1994.

[7]} Sheng Liang, Paul Hudak, and Mark Jones. Monad
transformers and modular interpreters. In Proceedings
of the ACM Symposium on Principles of Programming
Languages, pages 333-343, 1995.

[8] Eugenio Moggi. Computational lambda-calculus and
monads. In IEEE Symposium on Logic in Computer
Science, pages 14-23, 1989.

[9] Rishiyur S Nikhil, Arvind, and James Hicks, et. al. ph
language reference manual, version 1.0—preliminary.
Technical Report 369, MIT Computation Structures
Group Memo, January 1995. Working document de-
scribing pH extensions to Haskell.

{10] Simon L Peyton Jones and Philip Wadler. Imperative
functional programming. In Proceedings of the ACM
Symposium on Principles of Programming Languages,
pages 71-84, 1993.

[11] Guy L Steele Jr. Building interpreters by composing
monads. In Proceedings of the ACM Symposium on
Principles of Programming Languages, pages 472—492,
1994.

[12] Philip Wadler. The essence of functional programming.
In Proceedings of the ACM Symposium on Principles of
Programming Languages, pages 1-14, 1992.

[13] Philip Wadler. Comprehending monads. Mathematical
Structure in Computer Science, To appear.

