
Haskell Communities and Activities Report
http://www.haskell.org/communities/

Fifteenth Edition — November 2008

Janis Voigtländer (ed.)
Peter Achten Alfonso Acosta Andy Adams-Moran
Lloyd Allison Tiago Miguel Laureano Alves Krasimir Angelov
Apfelmus Emil Axelsson Arthur Baars

Sengan Baring-Gould Justin Bailey Alistair Bayley
Jean-Philippe Bernardy Clifford Beshers Gwern Branwen

Joachim Breitner Niklas Broberg Bjorn Buckwalter
Denis Bueno Andrew Butterfield Roman Cheplyaka
Olaf Chitil Jan Christiansen Sterling Clover

Duncan Coutts Jácome Cunha Nils Anders Danielsson
Atze Dĳkstra Robert Dockins Chris Eidhof
Conal Elliott Henrique Ferreiro García Sebastian Fischer
Leif Frenzel Nicolas Frisby Richard A. Frost
Peter Gavin Andy Gill George Giorgidze

Dimitry Golubovsky Daniel Gorin Jurriaan Hage
Bastiaan Heeren Aycan Irican Judah Jacobson
Wolfgang Jeltsch Kevin Hammond Enzo Haussecker

Christopher Lane Hinson Guillaume Hoffmann Martin Hofmann
Liyang HU Paul Hudak Graham Hutton

Wolfram Kahl Garrin Kimmell Oleg Kiselyov
Farid Karimipour Edward Kmett Lennart Kolmodin

Slawomir Kolodynski Michal Konečný Eric Kow
Stephen Lavelle Sean Leather Huiqing Li

Bas Lĳnse Ben Lippmeier Andres Löh
Rita Loogen Ian Lynagh John MacFarlane

Christian Maeder José Pedro Magalhães Ketil Malde
Blažević Mario Simon Marlow Michael Marte
Bart Massey Simon Michael Arie Middelkoop

Ivan Lazar Miljenovic Neil Mitchell Maarten de Mol
Dino Morelli Matthew Naylor Jürgen Nicklisch-Franken

Rishiyur Nikhil Thomas van Noort Jeremy O’Donoghue
Bryan O’Sullivan Patrick O. Perry Jens Petersen

Simon Peyton Jones Dan Popa Fabian Reck
Claus Reinke Alexey Rodriguez Alberto Ruiz
David Sabel Matthew Sackman Uwe Schmidt

Tom Schrĳvers Paulo Silva Ben Sinclair
Ganesh Sittampalam Jim Snow Dominic Steinitz

Don Stewart Jon Strait Martin Sulzmann
Doaitse Swierstra Wouter Swierstra Hans van Thiel

Henning Thielemann Phil Trinder Jared Updike
Marcos Viera Miguel Vilaca Janis Voigtländer
Edsko de Vries David Waern Jinjing Wang
Malcolm Wallace Eelis van der Weegen Ashley Yakeley

Brent Yorgey

http://www.haskell.org/communities/

2

Preface

This is the 15th edition of the Haskell Communities and Activities Report. There are interesting
news on the implementation front, new analysis and transformation tools, many fresh projects,
and new developments in established ones. Generic programming is one field that has seen a
lot of activity, and you will no doubt identify other recent trends as you go through the report.
As usual, entries that are completely new (or have been revived after having disappeared

temporarily) are formatted using a blue background. Updated entries have a header with a
blue background. In most cases of entries that have not been changed for a year or longer,
these have been dropped. Please do revive them if you have news on them for the next report.
The next report will be compiled in half a year. More details around May — watch the

mailing lists for announcements. But now enjoy the report and see what other Haskellers have
been up to lately. Any kind of feedback is of course very welcome 〈hcar@haskell.org〉.

Janis Voigtländer, Technische Universität Dresden, Germany

3

mailto: hcar at haskell.org

Contents

1 General 9
1.1 HaskellWiki and haskell.org . 9
1.2 #haskell . 9
1.3 The Monad.Reader . 9
1.4 Haskell Weekly News . 10
1.5 Books and tutorials . 10
1.5.1 Programming in Haskell . 10
1.5.2 Real World Haskell . 10
1.5.3 Haskell Wikibook . 11
1.5.4 Gtk2Hs tutorial . 11
1.5.5 Monad Tutorial . 11
1.5.6 Oleg’s Mini tutorials and assorted small projects . 11
1.5.7 Haskell Cheat Sheet . 12

2 Implementations 13
2.1 The Glasgow Haskell Compiler . 13
2.2 nhc98 . 14
2.3 yhc . 14
2.4 The Helium compiler . 14
2.5 EHC, “Essential Haskell” Compiler . 15
2.6 Hugs as Yhc Core Producer . 16
2.7 Haskell frontend for the Clean compiler . 16
2.8 The Reduceron . 17
2.9 Platforms . 17
2.9.1 Haskell in Gentoo Linux . 17
2.9.2 Fedora Haskell SIG . 17

3 Language 18
3.1 Extensions of Haskell . 18
3.1.1 Haskell Server Pages (HSP) . 18
3.1.2 GpH — Glasgow Parallel Haskell . 18
3.1.3 Eden . 19
3.1.4 XHaskell project . 20
3.1.5 HaskellActor (previously: HaskellActorJoin) . 20
3.2 Related Languages . 20
3.2.1 Curry . 20
3.2.2 Agda . 21
3.2.3 Clean . 21
3.3 Type System / Program Analysis . 22
3.3.1 Uniqueness Typing . 22
3.3.2 Free Theorems for Haskell . 22
3.3.3 The Disciplined Disciple Compiler (DDC) . 23

4 Tools 24
4.1 Scanning, Parsing, Transformations . 24
4.1.1 Alex version 2 . 24
4.1.2 Happy . 24
4.1.3 UUAG . 24
4.2 Documentation . 24
4.2.1 Haddock . 24
4.2.2 lhs2TEX . 25
4.3 Testing, Debugging, and Analysis . 25

4

4.3.1 SmallCheck and Lazy SmallCheck . 25
4.3.2 EasyCheck . 26
4.3.3 checkers . 26
4.3.4 CyCoTest . 26
4.3.5 G∀st . 27
4.3.6 Hat . 27
4.3.7 Concurrent Haskell Debugger . 27
4.3.8 Hpc . 28
4.3.9 SourceGraph . 28
4.4 Development . 28
4.4.1 Hoogle — Haskell API Search . 28
4.4.2 Leksah, Haskell IDE . 29
4.4.3 EclipseFP — Haskell support for the Eclipse IDE . 29
4.4.4 HEAT: The Haskell Educational Advancement Tool . 29
4.4.5 Haskell Mode Plugins for Vim . 30
4.4.6 yi . 30
4.4.7 HaRe — The Haskell Refactorer . 30
4.4.8 DarcsWatch . 31
4.4.9 cpphs . 31

5 Libraries 32
5.1 Cabal and Hackage . 32
5.2 Haskell Platform . 33
5.3 Auxiliary Libraries . 33
5.3.1 libmpd . 33
5.3.2 gravatar . 33
5.3.3 mersenne-random . 33
5.3.4 cmath . 33
5.3.5 hmatrix . 34
5.3.6 The Neon Library . 34
5.3.7 unamb . 34
5.4 Processing Haskell . 34
5.4.1 hint . 34
5.4.2 mueval . 34
5.4.3 hscolour . 35
5.5 Parsing and Transforming . 35
5.5.1 pcre-light . 35
5.5.2 HStringTemplate . 35
5.5.3 CoreErlang . 35
5.5.4 parse-dimacs: A DIMACS CNF Parser . 36
5.5.5 The X-SAIGA Project . 36
5.5.6 InterpreterLib . 36
5.5.7 KURE . 37
5.5.8 Typed Transformations of Typed Abstract Syntax (TTTAS) . 37
5.5.9 Grammar Based Read (GRead) . 37
5.5.10 Utrecht Parser Combinator Library . 38
5.6 Mathematical Objects . 38
5.6.1 dimensional . 38
5.6.2 Halculon: units and physical constants database . 39
5.6.3 Numeric prelude . 39
5.6.4 vector-space . 39
5.6.5 Nat . 40
5.6.6 AERN-Real and friends . 40
5.6.7 Haskell BLAS Bindings . 41
5.7 Data types and data structures . 41
5.7.1 Data.ByteString . 41
5.7.2 bytestring-mmap . 41
5.7.3 dlist . 41

5

5.7.4 HList — a library for typed heterogeneous collections . 41
5.7.5 stream-fusion . 42
5.7.6 Edison . 42
5.7.7 MemoTrie . 42
5.8 Data processing . 42
5.8.1 The Haskell Cryptographic Library . 42
5.8.2 The Haskell ASN.1 Library . 43
5.8.3 MultiSetRewrite . 43
5.8.4 Graphalyze . 43
5.9 Generic Programming . 44
5.9.1 uniplate . 44
5.9.2 Scrap Your Boilerplate (SYB) . 44
5.9.3 Extensible and Modular Generics for the Masses (EMGM) . 44
5.9.4 multirec: Generic programming with systems of recursive datatypes 45
5.9.5 Generic rewriting library for regular datatypes . 46
5.9.6 2LT: Two-Level Transformation . 46
5.10 Types for Safety and Reasoning . 47
5.10.1 Takusen . 47
5.10.2 Session Types for Haskell . 47
5.10.3 Category Extras — Comonad Transformers and Bird-Meertens combinators 48
5.10.4 IOSpec . 48
5.11 User interfaces . 48
5.11.1 Gtk2Hs . 48
5.11.2 HQK . 49
5.11.3 wxHaskell . 49
5.11.4 Shellac . 50
5.11.5 Haskeline . 50
5.12 Graphics . 51
5.12.1 diagrams . 51
5.12.2 FieldTrip . 51
5.13 Music . 51
5.13.1 YampaSynth . 51
5.13.2 Haskore revision . 52
5.14 Web and XML programming . 52
5.14.1 Haskell XML Toolbox . 52
5.14.2 HaXml . 53
5.14.3 tagsoup . 53
5.15 System . 53
5.15.1 hinotify . 53
5.15.2 hlibev . 54

6 Applications and Projects 55
6.1 For the Masses . 55
6.1.1 Darcs . 55
6.1.2 xmonad . 55
6.2 Education . 55
6.2.1 Exercise Assistants . 55
6.2.2 Holmes, plagiarism detection for Haskell . 56
6.2.3 Geordi IRC C++ eval bot . 56
6.2.4 Lambda Shell . 56
6.2.5 INblobs — Interaction Nets interpreter . 57
6.2.6 Soccer-Fun . 57
6.3 Web Development . 58
6.3.1 Holumbus Search Engine Framework . 58
6.3.2 Top Writer . 59
6.3.3 Panda blog engine . 59
6.3.4 InputYourData.com . 59
6.3.5 Hircules . 60

6

6.4 Data Management and Visualization . 60
6.4.1 Pandoc . 60
6.4.2 tiddlyisar . 60
6.4.3 Emping . 60
6.4.4 HaExcel — From Spreadsheets to Relational Databases and Back 61
6.4.5 Between Types and Tables . 61
6.4.6 SdfMetz . 61
6.5 Functional Reactive Programming . 62
6.5.1 Grapefruit . 62
6.5.2 Reactive . 62
6.5.3 Functional Hybrid Modeling . 63
6.6 Audio and Graphics . 63
6.6.1 Audio signal processing . 63
6.6.2 hsProcMusic . 64
6.6.3 Glome . 64
6.6.4 easyVision . 64
6.6.5 photoname . 65
6.6.6 Simplex-Based Spatial Operations . 65
6.7 Proof Assistants and Reasoning . 65
6.7.1 Galculator . 65
6.7.2 funsat: DPLL-style Satisfiability Solver . 66
6.7.3 sat-micro-hs: SAT-Micro in Haskell . 66
6.7.4 Saoithín: a 2nd-order proof assistant . 66
6.7.5 Inference Services for Hybrid Logics . 66
6.7.6 HyLoRes . 67
6.7.7 HTab . 67
6.7.8 HGen . 67
6.7.9 Sparkle . 67
6.8 Modeling and Analysis . 67
6.8.1 Coconut . 67
6.8.2 Streaming Component Combinators . 68
6.8.3 Raskell . 68
6.8.4 iTasks . 69
6.9 Hardware Design . 70
6.9.1 ForSyDe . 70
6.9.2 Lava . 70
6.9.3 Wired . 70
6.9.4 Oread . 71
6.10 Natural Language Processing . 71
6.10.1 GenI . 71
6.10.2 Grammatical Framework . 71
6.11 Inductive Programming . 72
6.11.1 Inductive Programming . 72
6.11.2 IgorII . 72
6.12 Others . 73
6.12.1 Bioinformatics tools . 73
6.12.2 lambdabot . 73
6.12.3 Roguestar . 73
6.12.4 Hpysics . 73
6.12.5 hledger . 74

7 Commercial Users 75
7.1 Well-Typed LLP . 75
7.2 SeeReason Partners, LLC . 75
7.3 Ansemond LLC . 75
7.4 Credit Suisse Global Modeling and Analytics Group . 76
7.5 Bluespec tools for design of complex chips . 76
7.6 Galois, Inc. 77

7

7.7 IVU Traffic Technologies AG Rostering Group . 77
7.8 Tupil . 78

8 Research and User Groups 79
8.1 Functional Programming Lab at the University of Nottingham . 79
8.2 Artificial Intelligence and Software Technology at Goethe-University Frankfurt 80
8.3 Functional Programming at the University of Kent . 80
8.4 Foundations and Methods Group at Trinity College Dublin . 81
8.5 Formal Methods at DFKI Bremen and University of Bremen . 81
8.6 SCIence project . 81
8.7 Functional Programming at K.U.Leuven, Belgium . 82
8.8 Haskell in Romania . 82
8.9 Assorted Small Portland State University Haskell Bits . 83

8

1 General

1.1 HaskellWiki and haskell.org

Report by: Ashley Yakeley
Participants: John Peterson, Olaf Chitil

HaskellWiki is a MediaWiki installation running on
haskell.org, including the haskell.org “front page”. Any-
one can create an account and edit and create pages.
Examples of content include:

◦ Documentation of the language and libraries

◦ Explanation of common idioms

◦ Suggestions and proposals for improvement of the
language and libraries

◦ Description of Haskell-related projects

◦ News and notices of upcoming events

We encourage people to create pages to describe and
advertise their own Haskell projects, as well as add to
and improve the existing content. All content is sub-
mitted and available under a “simple permissive” li-
cense (except for a few legacy pages).
In addition to HaskellWiki, the haskell.org website

hosts some ordinary HTTP directories. The machine
also hosts mailing lists. There is plenty of space and
processing power for just about anything that peo-
ple would want to do there: if you have an idea for
which HaskellWiki is insufficient, contact the maintain-
ers, John Peterson and Olaf Chitil, to get access to this
machine.

Further reading

◦ http://haskell.org/
◦ http://haskell.org/haskellwiki/Mailing_Lists

1.2 #haskell

Report by: Don Stewart

The #haskell IRC channel is a real-time text chat
where anyone can join to discuss Haskell. It is one
of the largest channels on freenode. The irc channel is
home to hpaste and lambdabot (→ 6.12.2), two useful
Haskell bots. Point your IRC client to irc.freenode.net
and join the #haskell conversation!
For non-English conversations about Haskell there

are now:

◦ #haskell.de — German speakers

◦ #haskell.dut — Dutch speakers

◦ #haskell.es — Spanish speakers

◦ #haskell.fi — Finnish speakers

◦ #haskell.fr — French speakers

◦ #haskell.hr — Croatian speakers

◦ #haskell.it — Italian speakers

◦ #haskell.jp — Japanese speakers

◦ #haskell.no — Norwegian speakers

◦ #haskell_ru — Russian speakers

◦ #haskell.se — Swedish speakers

Related Haskell channels are now emerging, including:

◦ #haskell-overflow — Overflow conversations

◦ #haskell-blah — Haskell people talking about any-
thing except Haskell itself

◦ #gentoo-haskell — Gentoo/Linux specific Haskell
conversations (→ 2.9.1)

◦ #haskell-books — Authors organizing the collabo-
rative writing of the Haskell Wikibook (→ 1.5.3)

◦ #darcs — Darcs revision control channel (→ 6.1.1)

◦ #ghc — GHC developer discussion (→ 2.1)

◦ #happs — HAppS Haskell Application Server chan-
nel

◦ #xmonad — XMonad, a tiling window manager (→
6.1.2)

Further reading

http://haskell.org/haskellwiki/IRC_channel

1.3 The Monad.Reader

Report by: Wouter Swierstra

There are plenty of academic papers about Haskell and
plenty of informative pages on the HaskellWiki (→ 1.1).
Unfortunately, there is not much between the two ex-
tremes. That is where The Monad.Reader tries to fit
in: more formal than a Wiki page, but more casual
than a journal article.
There are plenty of interesting ideas that maybe do

not warrant an academic publication — but that does
not mean these ideas are not worth writing about!
Communicating ideas to a wide audience is much more
important than concealing them in some esoteric jour-
nal. Even if it has all been done before in the Journal

9

http://haskell.org/
http://haskell.org/haskellwiki/Mailing_Lists
http://haskell.org/haskellwiki/IRC_channel

of Impossibly Complicated Theoretical Stuff, explain-
ing a neat idea about “warm fuzzy things” to the rest
of us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.
Since last year, I have moved a lot of old articles from

the old MoinMoin wiki to the new MediaWiki wiki.
Unfortunately, I do not have the time to reformat all
the old articles. If you fancy a go at tidying an article
or two, I would really appreciate your help!
I am always interested in new submissions, whether

you are an established researcher or fledgling Haskell
programmer. Check out the Monad.Reader homepage
for all the information you need to start writing your
article.

Further reading

http://www.haskell.org/haskellwiki/The_Monad.Reader

1.4 Haskell Weekly News

Report by: Don Stewart

The Haskell Weekly News (HWN) is an irregular
newsletter covering developments in Haskell. Content
includes announcements of new projects, jobs, discus-
sions from the various Haskell communities, notable
project commit messages, Haskell in the blogspace, and
more. The Haskell Weekly News also publishes latest
releases uploaded to Hackage.
It is published in html form on The Haskell Sequence,

via mail on the Haskell mailing list, on Planet Haskell,
and via RSS. Headlines are published on haskell.org (→
1.1).

Further reading

http://www.haskell.org/haskellwiki/Haskell_Weekly_
News

1.5 Books and tutorials

1.5.1 Programming in Haskell

Report by: Graham Hutton

Haskell is one of the leading languages for teaching
functional programming, enabling students to write
simpler and cleaner code, and to learn how to structure
and reason about programs. This introduction is ideal
for beginners: it requires no previous programming ex-
perience and all concepts are explained from first prin-
ciples via carefully chosen examples. Each chapter in-
cludes exercises that range from the straightforward to

extended projects, plus suggestions for further reading
on more advanced topics. The presentation is clear
and simple, and benefits from having been refined and
class-tested over several years.
Features include: freely accessible powerpoint slides

for each chapter; solutions to exercises, and examina-
tion questions (with solutions) available to instructors;
downloadable code that is compliant with the latest
Haskell release.
Publication details:
◦ Published by Cambridge University Press, 2007.

Paperback: ISBN 0521692695; Hardback: ISBN:
0521871727; eBook: ISBN 051129218X; Kindle:
ASIN B001FSKE6Q.

In-depth review:
◦ Duncan Coutts, The Monad.Reader (→ 1.3),
http://www.haskell.org/sitewiki/images/0/03/
TMR-Issue7.pdf

Further reading

http://www.cs.nott.ac.uk/~gmh/book.html

1.5.2 Real World Haskell

Report by: Bryan O’Sullivan
Participants: John Goerzen, Don Stewart
Status: active development

The book “Real World Haskell” about the practical ap-
plication of Haskell to everyday programming problems
has been published in November 2008 by O’Reilly.
Our intended audience is programmers with no back-

ground in functional languages. We explore a diverse
set of topics, among which are the following.

◦ Basics of Haskell and functional programming

◦ Developing software using standard tools like GHC
and the Cabal packaging system

◦ Code coverage, quality assurance, and performance
analysis

◦ Putting theory to work: working with and creating
monoids, normal and applicative functors, monads,
and monad transformers

◦ Applied topics: databases, filesystems, GUI pro-
gramming, web and other network clients, web
servers

◦ Concurrent, parallel, and transactional programming

◦ Error handling in pure and impure code

◦ Interfacing to C libraries

◦ Many case studies and runnable code examples

We are excited to be publishing the book under a Cre-
ative Commons License.

10

http://www.haskell.org/haskellwiki/The_Monad.Reader
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://www.haskell.org/sitewiki/images/0/03/TMR-Issue7.pdf
http://www.haskell.org/sitewiki/images/0/03/TMR-Issue7.pdf
http://www.cs.nott.ac.uk/~gmh/book.html

Further reading

http://book.realworldhaskell.org/

1.5.3 Haskell Wikibook

Report by: Apfelmus
Participants: Eric Kow, David House, Joeri van Eekelen,

and other contributors
Status: active development

The goal of the Haskell wikibook project is to build a
community textbook about Haskell that is at once free
(as in freedom and in beer), gentle, and comprehensive.
We think that the many marvelous ideas of lazy func-
tional programming can and thus should be accessible
to everyone in a central place.
Recently, the wikibook has been advancing rather

slowly. The rewrite of the Monad chapters is still in
progress and material about lazy evaluation is still be-
ing written. Of course, additional authors and contrib-
utors that help writing new contents or simply spot
mistakes and ask those questions we had never thought
of are more than welcome!

Further reading

◦ http://en.wikibooks.org/wiki/Haskell
◦ Mailing list: 〈wikibook@haskell.org〉

1.5.4 Gtk2Hs tutorial

Report by: Hans van Thiel

Most of the original GTK+2.0 tutorial by Tony Gail
and Ian Main has been adapted to Gtk2Hs (→ 5.11.1),
which is the Haskell binding to the GTK GUI library.
The Gtk2Hs tutorial also builds on “Programming

with gtkmm” by Murray Cumming et al. and the Inti
(Integrated Foundation Classes) tutorial by the Inti
team.
The Gtk2Hs tutorial assumes intermediate level

Haskell programming skills, but no prior GUI program-
ming experience.
It has been translated into Spanish, by Laszlo

Keuschnig, and both versions are available on Haskell
darcs.
See: http://darcs.haskell.org/gtk2hs/docs/tutorial/

Tutorial_Port/

1. Introduction
2. Getting Started
3. Packing

3.1 Packing Widgets
3.2 Packing Demonstration Program
3.3 Packing Using Tables

4. Miscellaneous Widgets
4.1 The Button Widget
4.2 Adjustments, Scale, and Range
4.3 Labels
4.4 Arrows and Tooltips
4.5 Dialogs, Stock Items, and Progress Bars
4.6 Text Entries and Status Bars
4.7 Spin Buttons

5. Aggregated Widgets
5.1 Calendar
5.2 File Selection
5.3 Font and Colour Selection
5.4 Notebook

6. Supporting Widgets
6.1 Scrolled Windows
6.2 EventBoxes and ButtonBoxes
6.3 The Layout Container
6.4 Paned Windows and Aspect Frames

7. Action Based Widgets
7.1 Menus and Toolbars
7.2 Popup Menus, Radio Actions,

and Toggle Actions
Appendix: Drawing with Cairo: Getting Started

The Glade tutorial, an introduction to visual Gtk2Hs
programming, has been updated to Glade 3 by Alex
Tarkovsky. It is available on: http://haskell.org/
gtk2hs/docs/tutorial/glade/ This tutorial has also been
translated into Spanish, by Laszlo Keuschnig, but it
is currently only available on: http://home.telfort.nl/
sp969709/glade/es-index.html

1.5.5 Monad Tutorial

Report by: Hans van Thiel
Status: stable, might be expanded later

The “Greenhorn’s Guide to becoming a Monad Cow-
boy” is yet another monad tutorial. It covers the basics
and some examples, including a monad transformer, in
a style which is a variation on the “for dummies” style.
Estimated learning time is 1–2 days. It is available at
http://www.muitovar.com/monad/moncow.xhtml

Further reading

http://www.muitovar.com/

1.5.6 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

11

http://book.realworldhaskell.org/
http://en.wikibooks.org/wiki/Haskell
mailto: wikibook at haskell.org
http://darcs.haskell.org/gtk2hs/docs/tutorial/Tutorial_Port/
http://darcs.haskell.org/gtk2hs/docs/tutorial/Tutorial_Port/
http://haskell.org/gtk2hs/docs/tutorial/glade/
http://haskell.org/gtk2hs/docs/tutorial/glade/
http://home.telfort.nl/sp969709/glade/es-index.html
http://home.telfort.nl/sp969709/glade/es-index.html
http://www.muitovar.com/monad/moncow.xhtml
http://www.muitovar.com/

The collection of various Haskell mini tutorials and
assorted small projects (http://okmĳ.org/ftp/Haskell/)
has received two additions:

Data-Generic and Data-Extensible Programming in
Haskell

This web page describes the generic programming li-
brary “Smash” and a couple of its applications. Smash
is a generic programming approach based on a type-
level typecase, best understood as a static dual of
“Scrap your boilerplate I” (SYB1). The Smash ap-
proach is powerful to express traversals where the type
of the result is computed from the type of the trans-
former and the type/structure of the original term. An
example is replacing all Floats with Doubles in an ar-
bitrary term, e.g., made of Maybes, tuples, lists; the
result type is computed and need not be specified.
One application explained on the web page is generic

de-serialization: reconstructing a term from a flat list
of its fields and a proto-type term specifying the de-
sired structure. The Smash library is part of the ex-
tensive generic programming comparison benchmark
by Alexey Rodriguez Yakushev, Alex Gerdes, and
Johan Jeuring. The implementation of benchmark
tests in Smash can be found at http://darcs.haskell.org/
generics/comparison/SmashA/
The web page also describes a variation of the

SYB3 type-class-based generic programming library
that avoids both higher-rank types and mutually recur-
sive instances. Because of the latter our code, unlike
SYB3, works even in Hugs.
http://okmĳ.org/ftp/Haskell/generics.html

State Monad as a term algebra

We show the implementation of the state monad as a
term algebra: a monadic action is a term built from
sub-terms Bind, Return, Get, and Put. The construc-
tors of the action are neither variants nor GADTs. The
function runst (a method of the type class RunState)
takes the initial state and the action data type, and in-
terprets the action manipulating the state accordingly.
The only non-trivial part is the interpretation of Bind,
due to the polymorphism of the monadic bind opera-
tion. Although our implementation uses no GADTs, we
nevertheless statically ensure that the interpretation of
an action never gets stuck.
http://okmĳ.org/ftp/Haskell/types.html#state-algebra

1.5.7 Haskell Cheat Sheet

Report by: Justin Bailey

I have created a “cheat sheet” for Haskell. It is a PDF
that tries to summarize Haskell 98’s syntax, keywords,
and other language elements. It is built from a liter-
ate source file, so all the examples in the cheat sheet
are executable. The cheatsheet is on Hackage. Once

downloaded, unpack the archive and you will see the
PDF and literate source.
I will be hosting the PDF directly, but for now I

wanted a “limited” release. Posting to Hackage limits
the audience somewhat. I will send an additional an-
nouncement when feedback has been incorporated and
the PDF is available generally.

Further reading

http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/CheatSheet

12

http://okmij.org/ftp/Haskell/
http://darcs.haskell.org/generics/comparison/SmashA/
http://darcs.haskell.org/generics/comparison/SmashA/
http://okmij.org/ftp/Haskell/generics.html
http://okmij.org/ftp/Haskell/types.html#state-algebra
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/CheatSheet
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/CheatSheet

2 Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton Jones
Participants: Geoff Mainland, Max Bolingbroke, Dan

Licata, Manuel Chakravarty, David Waern,
Simon Marlow, Thomas Schilling, Tim

Chevalier, Roman Leshchinskiy, John Dias,
Donnie Jones, Jost Berthold, Clemens

Fruhwirth, and many others

For the last six months we have been primarily focused
on the 6.10.1 release, which should be out by the time
you read this. We are extremely grateful for the in-
creasing support we get from the community in putting
GHC releases together; more people than ever before
are now helping maintain subcomponents, implement-
ing features, fixing bugs, testing release candidates, and
much more besides. We could not have made this re-
lease without your help!

The GHC 6.10 branch

GHC 6.10.1 is the first release in the 6.10 branch, and
features many improvements over the 6.8 branch. The
release notes have fully details, but the highlights are:

◦ Some new language features have been implemented:
– Record syntax: wild-card patterns, punning,

and field disambiguation
– Generalized quasi-quotes (Geoff Mainland),

from the paper Why it’s nice to be quoted:
quasi-quoting in Haskell (Haskell workshop
2007)

– Generalized list comprehensions (Max Boling-
broke), from the paper Comprehensive compre-
hensions: comprehensions with “Order by” and
“Group by” (Haskell workshop 2007)

– View patterns (Dan Licata); see view patterns
wiki page

◦ Type families have been completely re-implemented,
by Manuel Chakravarty, along the lines of our ICFP
2008 paper Type checking with open type functions
— only simpler. As a result, we believe that type
families work reliably in GHC 6.10. There is one
missing feature, however, namely the ability to have
equalities in the superclass context of a class. We will
add that to the HEAD in the next few months. An
up-to-date wiki page tracks design issues and current
status.

◦ GHC now comes with Haddock 2, which supports all
GHC extensions, thanks to David Waern.

◦ Parallel garbage collection has been implemented
by Simon Marlow. This speeds up even purely-
sequential programs, by using the extra processors
during garbage collection. Our ISMM’08 paper gives
the details Parallel generational-copying garbage col-
lection with a block-structured heap.

◦ The base library now provides, and uses, extensible
exceptions, as described in Simon Marlow’s paper An
Extensible Dynamically-Typed Hierarchy of Excep-
tions (Haskell workshop 2006).

◦ Thomas Schilling has made the GHC API easier to
use, by using a Ghc monad to carry the session state.
Furthermore, the API now has Haddock documenta-
tion.

◦ External core (output only) now works again, thanks
to Tim Chevalier.

◦ Data Parallel Haskell (DPH) comes as part of GHC,
as a result of Roman Leshchinskiy’s efforts. In 6.10,
for the first time, DPH includes a full vectorizer, so
the system is much more usable than before. It is
still really an alpha release, though; we very much
welcome friendly guinea pigs, but it is not ready for
your 3 gigabyte genome search program. We have
a lot of performance tuning to do. We have written
a new paper Harnessing the multicores: nested data
parallelism in Haskell (FSTTCS’08), which gives a
tutorial overview of the system, focusing especially
on vectorization.

The GHC 6.12 branch

Meanwhile, development goes on in the HEAD:

◦ John Dias has been working hard on rewriting GHC’s
backend, and his changes should be landing in the
HEAD during October. You can find an overview of
the new architecture on the wiki.

◦ Data Parallel Haskell remains under very active de-
velopment.

◦ We hope that Max Bolingbroke’s Dynamically
Loaded Plugins summer of code project will be
merged in time for 6.12. Part of this is a new, mod-
ular system for user-defined annotations, rather like
Java or C# attributes. These attributes are persisted
into interface files, can be examined and created by
plugins, or by GHC API clients.

◦ Likewise, Donnie Jones’ project for profiling parallel
programs should be merged in time for 6.12.

13

http://www.eecs.harvard.edu/~mainland/ghc-quasiquoting/mainland07quasiquoting.pdf
http://www.eecs.harvard.edu/~mainland/ghc-quasiquoting/mainland07quasiquoting.pdf
http://research.microsoft.com/~simonpj/papers/list-comp/index.htm
http://research.microsoft.com/~simonpj/papers/list-comp/index.htm
http://research.microsoft.com/~simonpj/papers/list-comp/index.htm
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns
http://research.microsoft.com/~simonpj/papers/assoc-types/index.htm
http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions
http://research.microsoft.com/~simonpj/papers/parallel-gc/index.htm
http://research.microsoft.com/~simonpj/papers/parallel-gc/index.htm
http://www.haskell.org/~simonmar/papers/ext-exceptions.pdf
http://www.haskell.org/~simonmar/papers/ext-exceptions.pdf
http://www.haskell.org/~simonmar/papers/ext-exceptions.pdf
http://research.microsoft.com/~simonpj/papers/ndp/index.htm
http://research.microsoft.com/~simonpj/papers/ndp/index.htm
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/NewCodeGenPipeline
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/NewCodeGenPipeline
http://hackage.haskell.org/trac/ghc/wiki/Annotations

◦ Simon Marlow is working on improving parallel
performance, incorporating the work done by Jost
Berthold during his internship at Microsoft in the
summer of 2008. The plan is to make writing per-
formant parallel programs less of a trial-and-error
process, by whacking as many bottlenecks as we can
find in the runtime system. We are already making
significant improvements, and there is plenty more
low-hanging fruit to pick. One large project that we
hope to tackle is the issue of doing independent per-
CPU garbage collection.

◦ Shared Libraries are inching ever closer to being com-
pleted. Clemens Fruhwirth has been working on pol-
ishing the support for shared libraries on Unix sys-
tems in particular, and when the remaining issues
are ironed out we should be able to roll them out in
a release.

◦ Finally, unicode text I/O and dynamic libraries were
slated for 6.10 but were not quite ready in time, so
we certainly expect those to make it for in 6.12.

From a development point of view, there are a couple
of changes on the horizon:

◦ We plan to change how GHC’s build system works,
to decouple it from Cabal’s internals. Our current
plans are here.

◦ We plan to change from darcs to git for the version
control system used by GHC; our plans are described
here.

We plan to make the build-system changes first, and
only then tackle the version control system.

Summary

Keeping GHC functioning for an increasingly-diverse
user base is quite a challenge, especially as we keep
changing the wheels while the bus is driving along.
Please do consider joining in; there are plenty of things
that need doing, and do not require intimate knowledge
of the internals. We could particularly do with more
help on supporting the Windows, Sparc, and BSD ports
of GHC.

2.2 nhc98

Report by: Malcolm Wallace
Status: stable, maintained

nhc98 is a small, easy to install, compiler for Haskell’98.
nhc98 is still very much alive and working, although it
does not see many new features these days. We expect
a new public release (1.22) soon, to coincide with the
release of ghc-6.10.x, in particular to ensure that the
included libraries are compatible across compilers.

Further reading

◦ http://haskell.org/nhc98
◦ darcs get http://darcs.haskell.org/nhc98

2.3 yhc

Report by: Neil Mitchell
Participants: Dimitry Golubovsky

The York Haskell Compiler (yhc) is a fork of the
nhc98 compiler (→ 2.2), with goals such as increased
portability, platform independent bytecode, integrated
Hat (→ 4.3.6) support, and generally being a cleaner
code base to work with. Yhc now compiles and runs
almost all Haskell 98 programs, has basic FFI support
— the main thing missing is haskell.org base libraries,
which is being worked on.
There are a number of projects that make use of the

Yhc.Core library, in particular a Javascript and Erlang
backend.

Further reading

◦ Homepage: http://www.haskell.org/haskellwiki/Yhc
◦ Darcs repository: http://darcs.haskell.org/yhc
◦ Yhc Javascript Web Service http://www.haskell.org/

haskellwiki/Yhc_web_service

2.4 The Helium compiler

Report by: Jurriaan Hage
Participants: Bastiaan Heeren, Arie Middelkoop

Helium is a compiler that supports a substantial sub-
set of Haskell 98 (but, e.g., n+k patterns are missing).
Type classes are restricted to a number of built-in type
classes and all instances are derived. The advantage of
Helium is that it generates novice friendly error feed-
back. The latest versions of the Helium compiler are
available for download from the new website located
at http://www.cs.uu.nl/wiki/Helium. This website also
explains in detail what Helium is about, what it offers,
and what we plan to do in the near and far future.
We are still working on making version 1.7 available,

mainly a matter of updating the documentation and
testing the system. Internally little has changed, but
the interface to the system has been standardized, and
the functionality of the interpreters has been improved
and made consistent. We have made new options avail-
able (such as those that govern where programs are
logged to). The use of Helium from the interpreters is
now governed by a configuration file, which makes the
use of Helium from the interpreters quite transparent
for the programmer. It is also possible to use differ-
ent versions of Helium side by side (motivated by the
development of Neon (→ 5.3.6)).

14

http://hackage.haskell.org/trac/ghc/wiki/Design/BuildSystem
http://hackage.haskell.org/trac/ghc/wiki/Design/VersionControlSystem
http://haskell.org/nhc98
http://darcs.haskell.org/nhc98
http://www.haskell.org/haskellwiki/Yhc
http://darcs.haskell.org/yhc
http://www.haskell.org/haskellwiki/Yhc_web_service
http://www.haskell.org/haskellwiki/Yhc_web_service
http://www.cs.uu.nl/wiki/Helium

A student is currently in the process of adding type
class and instance definitions to the language. The
work on the documentation has progressed quite a bit,
but there has been little testing thus far, especially on
a platform such as Windows.

2.5 EHC, “Essential Haskell” Compiler

Report by: Atze Dĳkstra
Participants: Jeroen Fokker, Doaitse S. Swierstra, Arie

Middelkoop, Lucília Camarão de
Figueiredo, Carlos Camarão de Figueiredo

Status: active development

What is EHC? The EHC project provides a Haskell
compiler as well as a description of the compiler which
is as understandable as possible so it can be used for
education as well as research.
For its description an Attribute Grammar system

(AG) is used as well as other formalisms allowing com-
pact notation like parser combinators. For the descrip-
tion of type rules, and the generation of an AG imple-
mentation for those type rules, we use the Ruler system.
For source code management we use Shuffle, which al-
lows partitioning the system into a sequence of steps
and aspects. (Both Ruler and Shuffle are included in
the EHC project).
The EHC project also tackles other issues:

◦ In order to avoid overwhelming the innocent reader,
the description of the compiler is organized as a series
of increasingly complex steps. Each step corresponds
to a Haskell subset which itself is an extension of the
previous step. The first step starts with the essen-
tials, namely typed lambda calculus; the last step
corresponds to full Haskell.

◦ Independent of each step the implementation is or-
ganized into a set of aspects. Currently the type
system and code generation are defined as aspects,
which can then be left out so the remaining part can
be used as a barebones starting point.

◦ Each combination of step + aspects corresponds to
an actual, that is, an executable compiler. Each of
these compilers is a compiler in its own right.

◦ The description of the compiler uses code fragments
which are retrieved from the source code of the com-
pilers. In this way the description and source code
are kept synchronized.

Currently EHC offers experimental implementation
of more advanced features like higher-ranked poly-
morphism, partial type signatures, and kind polymor-
phism. Part of the description of the series of EH com-
pilers is available as a PhD thesis.

What is EHC’s status, what is new?

◦ A Haskell frontend plus Prelude has been made, com-
piled code runs with an interpreter. The compiler has
an acceptable memory + resource footprint (done by
Atze Dĳkstra).

◦ A GRIN (Graph Reduction Intermediate Notation)
based backend is available, offering global program
optimization and code generation to C (done by
Jeroen Fokker) as well as LLVM (done by John van
Schie).

◦ Work has started on formalizing EHC’s type system;
extending our Ruler system will be part of this effort
(by Lucília Camarão de Figueiredo, Carlos Camarão
de Figueiredo, Arie Middelkoop, Atze Dĳkstra).

◦ The organization of EHC into aspects, allowing bet-
ter partial reuse of EHC.

◦ Though not a direct part of EHC, its supporting tools
(AG, Shuffle) are regularly adapted to allow a cleaner
EHC code base.

Is EHC used, can I use EHC? Yes, but the answer
also depends for what purpose. Although it compiles a
Prelude, we have yet to prepare a release of EHC as a
Haskell compiler. Also, the first release will definitively
be a alpha release, meant for play and experimentation,
not for compiling real world programs.
EHC is used as a platform for experimentation, see

EHC’s webpage for various projects related to EHC.
EHC can be downloaded from our svn repository.

What will happen with EHC in the near future? We
plan to do the following:

◦ Make the variant for full Haskell available as a
Haskell compiler. For this we will stabilize the im-
plementation and add proper documentation.

◦ Rework the type system to have a more formal un-
derpinning. Our intent is to use and extend our Ruler
system for this.

Further reading

◦ Homepage: http://www.cs.uu.nl/wiki/Ehc/WebHome
◦ Attribute grammar system: http://www.cs.uu.nl/

wiki/HUT/AttributeGrammarSystem
◦ Parser combinators: http://www.cs.uu.nl/wiki/HUT/

ParserCombinators
◦ Shuffle: http://www.cs.uu.nl/wiki/Ehc/Shuffle
◦ Ruler: http://www.cs.uu.nl/wiki/Ehc/Ruler

15

http://www.cs.uu.nl/wiki/Ehc/WebHome
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/Ehc/Shuffle
http://www.cs.uu.nl/wiki/Ehc/Ruler

2.6 Hugs as Yhc Core Producer

Report by: Dimitry Golubovsky
Status: Experimental

Background

Hugs is one of the oldest implementations of Haskell
known, an interactive compiler and bytecode inter-
preter. Yhc (→ 2.3) is a fork of nhc98 (→ 2.2). Yhc
Core is an intermediate form Yhc uses to represent a
compiled Haskell program.
Yhc converts each Haskell module to a binary Yhc

Core file. Core modules are linked together, and all
redundant (unreachable) code is removed. The Linked
Core is ready for further conversions by backends.
Hugs loads Haskell modules into memory and stores

them in a way to some degree similar to Yhc Core.
Hugs is capable to dump its internal storage structure
in textual form (let us call it Hugs Core). The output
looks similar to Yhc Core, pretty-printed. This was ini-
tially intended for debugging purposes, however several
Hugs CVS (now darcs) log records related such output
to some “Snowball Haskell compiler” ca. 2001.

The experiment

The goal of the experiment described here was to con-
vert Hugs Core into Yhc Core, so Hugs might become
a frontend for existing and future Yhc Core optimiz-
ers and backends. At least one benefit is clear: Hugs
is well maintained to be compatible with recent ver-
sions of Haskell libraries and supports many of Haskell
language extensions that Yhc does not yet support.
The necessary patches were pushed to the main Hugs

repository in June 2008, thanks to Ross Paterson for
reviewing them. The following changes were made:

1. A configuration option was added to enable the gen-
eration of Hugs Core.

2. The toplevel Makefile was modified to build an ad-
ditional executable, corehugs.

3. Consistency of Hugs Core output in terms of naming
of modules and functions was improved.

The corehugs program converts Haskell source files
into Hugs Core files, one for one. All functions and
data constructors are preserved in the output, whether
reachable or not. Unreachable items will be removed
later using Yhc Core tools.
The conversion of Hugs Core to Yhc Core is per-

formed outside of Hugs using the hugs2yc package.
The package provides a parser for the syntax of Hugs
Core and an interface to the Yhc Core Linker. All Hugs
Core files written by corehugs are read in and parsed,
resulting in the set of Yhc Core modules in memory.
The modules are linked together using the Yhc Core
Linker, and all unreachable items are removed at this

point. A “driver” program that uses the package may
save the linked Yhc Core in a file, or pass it on to a
backend. The code of the hugs2yc package is compat-
ible to both Hugs and GHC.

Availability

In order to use the new Hugs functionality, obtain
Hugs from the “HEAD” darcs repo, see http://hackage.
haskell.org/trac/hugs/wiki/GettingTheSource. However,
Hugs obtained in such a way may not always compile.
This Google Code project: http://code.google.com/p/
corehugs/ hosts specialized snapshots of Hugs that are
more likely to build on a random computer and also in-
clude additional packages necessary to work with Yhc
Core.

Future plans

Further effort will be taken to standardize various as-
pects of Yhc Core, especially the specification of prim-
itives, because all backends must implement them uni-
formly. This Google spreadsheet: http://tinyurl.com/
prim-normal-set contains the proposal for an unified set
of Yhc Core primitives.
Work is in progress on various backends for Yhc

Core, including Javascript, Erlang, Python, JVM,
.NET, and others. This Wiki page: http://tinyurl.com/
ycore-conv-infra summarizes their development status.

Further reading

◦ Yhc Core conversion infrastructure
http://tinyurl.com/ycore-conv-infra

◦ Download Hugs specialized snapshots
http://code.google.com/p/corehugs/

◦ Proposed specification of the Normal Set of primi-
tives
http://tinyurl.com/prim-normal-set

◦ A brief example of using corehugs
http://code.google.com/p/corehugs/wiki/
Demonstration

2.7 Haskell frontend for the Clean
compiler

Report by: Thomas van Noort
Participants: John van Groningen, Rinus Plasmeĳer
Status: active development

We are currently working on a frontend for the Clean
compiler (→ 3.2.3) that supports a subset of Haskell 98.
This will allow Clean modules to import Haskell mod-
ules, and vice versa. Furthermore, we will be able to
use some of Clean’s features in Haskell code, and vice
versa. For example, we could define a Haskell module
which uses Clean’s uniqueness typing, or a Clean mod-
ule which uses Haskell’s newtypes. The possibilities are

16

http://hackage.haskell.org/trac/hugs/wiki/GettingTheSource
http://hackage.haskell.org/trac/hugs/wiki/GettingTheSource
http://code.google.com/p/corehugs/
http://code.google.com/p/corehugs/
http://tinyurl.com/prim-normal-set
http://tinyurl.com/prim-normal-set
http://tinyurl.com/ycore-conv-infra
http://tinyurl.com/ycore-conv-infra
http://tinyurl.com/ycore-conv-infra
http://code.google.com/p/corehugs/
http://tinyurl.com/prim-normal-set
http://code.google.com/p/corehugs/wiki/Demonstration
http://code.google.com/p/corehugs/wiki/Demonstration

endless!

Future plans

We hope to release a beta version of the new Clean
compiler, solely to the institution in Nĳmegen, by the
end of this year. But there is still a lot of work to do
before we are able to release it to the outside world,
so we cannot make any promises regarding the release
date. Keep an eye on the Clean mailing lists for any
important announcements!

Further reading

http://wiki.clean.cs.ru.nl/Mailing_lists

2.8 The Reduceron

Report by: Matthew Naylor
Participants: Colin Runciman
Status: Experimental

The Reduceron is a prototype of a special-purpose
graph reduction machine, built using an FPGA. It can
access up to eight graph nodes in parallel on each of
its stack, heap, and combinator memories. The goal
so far has been to optimize function application. Eight
combinator nodes can be instantiated with eight stack
elements and placed on the heap, all in a single cycle.
The Reduceron is a simple machine, containing just

four instructions and a garbage collector, and executes
core Haskell almost directly. The translator to byte-
code and the FPGA machine are both implemented in
Haskell, the latter using Lava (→ 6.9.2). See the URL
below for details and results.
Since the last HCAR, I have written a thesis in which

chapter 2 is dedicated to the Reduceron. I am now
working on a new Reduceron which I hope will exploit
wide, parallel memories further. I am also working on
a new variant of Lava, to support the demands of the
Reduceron.

Further reading

http://www.cs.york.ac.uk/~mfn/reduceron2/

2.9 Platforms

2.9.1 Haskell in Gentoo Linux

Report by: Lennart Kolmodin

GHC version 6.8.2 has been in Gentoo since late last
year, and is about to go stable. All of the 60+ Haskell
libraries and tools work with it, too. There are also
GHC binaries available for alpha, amd64, hppa, ia64,
sparc, and x86.

Browse the packages in portage at http://packages.
gentoo.org/category/dev-haskell?full_cat.
The GHC architecture/version matrix is available at

http://packages.gentoo.org/package/dev-lang/ghc.
Please report problems in the normal Gentoo bug

tracker at bugs.gentoo.org.
There is also a Haskell overlay providing another 200

packages. Thanks to the recent progress of Cabal and
Hackage (→ 5.1), we have written a tool called “hack-
port” (initiated by Henning Günther) to generate Gen-
too packages that rarely need much tweaking.
The overlay is available at http://haskell.org/

haskellwiki/Gentoo. Using Darcs (→ 6.1.1), it is easy to
keep updated and send patches. It is also available via
the Gentoo overlay manager “layman”. If you choose to
use the overlay, then problems should be reported on
IRC (#gentoo-haskell on freenode), where we coor-
dinate development, or via email 〈haskell@gentoo.org〉.
Lately a few of our developers have shifted focus, and

only a few developers remain. If you would like to help,
which would include working on the Gentoo Haskell
framework, hacking on hackport, writing ebuilds, and
supporting users, please contact us on IRC or email as
noted above.

2.9.2 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Bryan Sullivan, Yaakov Nemoy, Fedora

Haskell SIG
Status: on-going

The Fedora Haskell SIG is an effort to provide good
support for Haskell in Fedora.
We now have a set of rpm macros and Packaging

Guidelines for packaging Cabal-based packages in Fe-
dora: so it is now fairly easy to get Haskell packages
reviewed and approved by package reviewers in Fedora.
Fedora 10 will ship with ghc-6.8.3 and the new rpm

macros at the end of this month.
For Fedora 11 we are planning to move to ghc-6.10

and add plenty of Haskell libraries using the new Fe-
dora Haskell Packaging Guidelines, and hopefully also
experiment with shared libraries and cabal-install.

Further reading

http://fedoraproject.org/wiki/SIGs/Haskell

17

http://wiki.clean.cs.ru.nl/Mailing_lists
http://www.cs.york.ac.uk/~mfn/reduceron2/
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/package/dev-lang/ghc
bugs.gentoo.org
http://haskell.org/haskellwiki/Gentoo
http://haskell.org/haskellwiki/Gentoo
mailto: haskell at gentoo.org
http://fedoraproject.org/wiki/SIGs/Haskell

3 Language

3.1 Extensions of Haskell

3.1.1 Haskell Server Pages (HSP)

Report by: Niklas Broberg
Status: active development

Haskell Server Pages (HSP) is an extension of Haskell
targeted at writing dynamic web pages. Key features
and selling points include:

◦ Use literal XML syntax in your Haskell code for cre-
ating values of appropriate datatypes. (Note though
that writing literal XML is quite optional, if you, like
me, do not really enjoy that language.)

◦ Guarantees that XML output is well-formed (and an
HTML output mode if that is what you need).

◦ A model that gives easy access to necessary environ-
ment variables.

◦ Simple programming model that is easy to use even
for non-experienced Haskell programmers, in partic-
ular with a very simple transition from static XML
pages to dynamic HSP pages.

◦ Easy integration with a DSL called HJScript that
makes it easy to write client-side (JavaScript) scripts.

◦ An extension of HAppS that can serve HSP pages on
the fly, making deployment of pages really simple.

HSP is continuously released onto Hackage. It consists
of a series of interdependent packages with package
hsp as the main top-level starting point, and package
happs-hsp for integration with HAppS. The best way
to keep up with development is to grab the darcs repos-
itories, all located under http://code.haskell.org/HSP.

Further reading

http://haskell.org/haskellwiki/HSP

3.1.2 GpH — Glasgow Parallel Haskell

Report by: Phil Trinder
Participants: Abyd Al Zain, Mustafa Aswad, Jost

Berthold, Jamie Gabbay, Murray Gross,
Hossein Haeri, Kevin Hammond, Vladimir

Janjic, Hans-Wolfgang Loidl

Status

A complete, GHC-based implementation of the parallel
Haskell extension GpH and of evaluation strategies is

available. Extensions of the runtime-system and lan-
guage to improve performance and support new plat-
forms are under development.

System Evaluation and Enhancement

◦ Both GpH and Eden parallel Haskells are being used
for parallel language research and in the SCIEnce
project (see below).

◦ We are making comparative evaluations of a range of
GpH implementations and other parallel functional
languages (Eden and Feedback Directed Implicit
Parallelism (FDIP)) on multicore architectures.

◦ We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Phillips Universität Mar-
burg.

◦ We are developing a big step operational semantics
for seq and using it to prove identities.

GpH Applications

As part of the SCIEnce EU FP6 I3 project (026133) (→
8.6) (April 2006 – April 2011) we use GpH and Eden
as middleware to provide access to computational grids
from Computer Algebra(CA) systems, including GAP,
Maple MuPad and KANT. We have designed, imple-
mented and are evaluating the SymGrid-Par interface
that facilitates the orchestration of computational al-
gebra components into high-performance parallel ap-
plications.
In recent work we have demonstrated that SymGrid-

Par is capable of exploiting a variety of modern paral-
lel/multicore architectures without any change to the
underlying CA components; and that SymGrid-Par is
capable of orchestrating heterogeneous computations
across a high-performance computational Grid.

Implementations

The GUM implementation of GpH is available in two
main development branches.

◦ The focus of the development has switched to ver-
sions tracking GHC releases, currently GHC 6.8, and
the development version is available upon request to
the GpH mailing list (see the GpH web site).

◦ The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines. The
stable branch is available from the GHC CVS repos-
itory via tag gum-4-06.

18

http://code.haskell.org/HSP
http://haskell.org/haskellwiki/HSP
http://www.macs.hw.ac.uk/~dsg/gph/#GPH
http://www.macs.hw.ac.uk/~dsg/gph/papers/html/Strategies/strategies.html
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.mathematik.uni-marburg.de/~eden/
http://www.symbolic-computation.org/
http://www.symbolic-computation.org/
http://www.macs.hw.ac.uk/~trinder/ParDistr/
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.macs.hw.ac.uk/~dsg/gph/

We are exploring new, prescient scheduling mecha-
nisms for GpH.
Our main hardware platforms are Intel-based Be-

owulf clusters and multicores. Work on ports to other
architectures is also moving on (and available on re-
quest):

◦ A port to a Mosix cluster has been built in the
Metis project at Brooklyn College, with a first ver-
sion available on request from Murray Gross.

Further reading

◦ GpH Home Page: http://www.macs.hw.ac.uk/~dsg/
gph/

◦ Stable branch binary snapshot: ftp://ftp.macs.hw.ac.
uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar

◦ Stable branch installation instructions: ftp://ftp.
macs.hw.ac.uk/pub/gph/README.GUM

Contact

〈gph@macs.hw.ac.uk〉, 〈mgross@dorsai.org〉

3.1.3 Eden

Report by: Rita Loogen
Participants: in Madrid: Ricardo Peña, Yolanda

Ortega-Mallén, Mercedes Hidalgo,
Fernando Rubio, Alberto de la Encina,

Lidia Sánchez-Gil
in Marburg: Jost Berthold, Mischa

Dieterle, Oleg Lobachev, Thomas
Horstmeyer, Johannes May

Status: Ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.
Eden’s main constructs are process abstractions and

process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in paral-
lel. Process instantiation is expressed by the prede-
fined infix operator (#) :: Process a b -> a ->
b. Higher-level coordination is achieved by defining
skeletons, ranging from a simple parallel map to so-
phisticated replicated-worker schemes. They have been
used to parallelize a set of non-trivial benchmark pro-
grams.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Peña: Parallel Functional Programming in Eden,

Journal of Functional Programming 15(3), 2005, pages
431–475.

Implementation

A major revision of the parallel Eden runtime envi-
ronment for GHC 6.8.1 is available from the Mar-
burg group on request. Support for Glasgow parallel
Haskell (→ 3.1.2) is currently being added to this ver-
sion of the runtime environment. It is planned for the
future to maintain a common parallel runtime environ-
ment for Eden, GpH, and other parallel Haskells. Pro-
gram executions can be visualized using the Eden trace
viewer tool EdenTV. Recent results show that the sys-
tem behaves equally well on workstation clusters and
on multi-core machines.

Recent Theses

◦ Jost Berthold: Implicit and Explicit Parallel Func-
tional Programming: Concepts and Implementation,
Dissertation (PhD thesis), Fachbereich Mathematik
und Informatik, Philipps-Universität Marburg, June
2008.

◦ Alberto de la Encina: Formalizando el proceso de
depuración en programación funcional paralela y
perezosa, Tesis Doctoral (PhD thesis), Facultad de
Ciencias Matemáticas, Universidad Complutense de
Madrid, June 2008, in Spanish.

◦ Lidia Lidia Sánchez-Gil: Sobre la equivalencia en-
tre semánticas operacionales y denotacionales para
lenguajes funcionales paralelos, Master Thesis, Uni-
versidad Complutense de Madrid, September 2008
(in Spanish).

Recent and Forthcoming Publications

◦ Jost Berthold, Simon Marlow, Kevin Hammond, and
Abyd Al Zain: Comparing and Optimising Parallel
Haskell Implementations on Multicore, Draft Pro-
ceedings of the 20th International Symposium on the
Implementation and Application of Functional Lan-
guages (IFL), September 2008

◦ Mischa Dieterle, Jost Berthold, and Rita Loogen:
Functional Skeleton Implementations for Parallel
Map-and-Reduce, Draft Proceedings of the 20th In-
ternational Symposium on the Implementation and
Application of Functional Languages (IFL), Septem-
ber 2008.

◦ Jost Berthold, Mischa Dieterle, and Rita Loogen: A
Distributed Work Pool Skeleton in Eden, submitted.

◦ Oleg Lobachev, Jost Berthold, Mischa Dieterle, and
Rita Loogen: Parallel FFT With Eden Skeletons, in
preparation.

◦ Oleg Lobachev and Rita Loogen: Towards an Im-
plementation of a Computer Algebra System in a
Functional Language, 9th International Conference
on Artificial Intelligence and Symbolic Computa-

19

http://www.sci.brooklyn.cuny.edu/~metis/
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.macs.hw.ac.uk/~dsg/gph/
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
mailto: gph at macs.hw.ac.uk
mailto: mgross at dorsai.org

tion (AISC), Birmingham, July 2008, Springer LNAI
5144, 141–154.

◦ Alberto de la Encina, Ismael Rodríguez, and Fer-
nando Rubio: A Debugger for Parallel Haskell Di-
alects, LNCS 5022, Springer 2008, 282-293.

Further reading

http://www.mathematik.uni-marburg.de/~eden

3.1.4 XHaskell project

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu

XHaskell is an extension of Haskell which combines
parametric polymorphism, algebraic data types, and
type classes with XDuce style regular expression types,
subtyping, and regular expression pattern matching.
The latest version can be downloaded via http://code.
google.com/p/xhaskell/

Latest developments

Kenny’s thesis will be available by the end of the year,
describing in detail the formal underpinnings behind
XHaskell.
One of the things we will be looking into in the future

is to turn XHaskell into a library (rather than stand-
alone compiler).

3.1.5 HaskellActor (previously: HaskellActorJoin)

Report by: Martin Sulzmann

The focus of the HaskellActor project is on
Erlang-style concurrency abstractions. See for
details: http://sulzmann.blogspot.com/2008/10/
actors-with-multi-headed-receive.html
Novel features of HaskellActor include

◦ Multi-headed receive clauses, with support for

◦ guards, and

◦ propagation

Latest developments

The HaskellActor implementation (as a library exten-
sion to Haskell) is available via http://hackage.haskell.
org/cgi-bin/hackage-scripts/package/actor

3.2 Related Languages

3.2.1 Curry

Report by: Jan Christiansen
Participants: Bernd Braßel, Michael Hanus, Wolfgang

Lux, Sebastian Fischer, and others
Status: active development

Curry is a functional logic programming language with
Haskell syntax. In addition to the standard features of
functional programming like higher-order functions and
lazy evaluation, Curry supports features known from
logic programming. This includes programming with
non-determinism, free variables, constraints, declara-
tive concurrency, and the search for solutions. Al-
though Haskell and Curry share the same syntax, there
is one main difference with respect to how function dec-
larations are interpreted. In Haskell the order in which
different rules are given in the source program has an
effect on their meaning. In Curry, in contrast, the rules
are interpreted as equations, and overlapping rules in-
duce a non-deterministic choice and a search over the
resulting alternatives. Furthermore, Curry allows to
call functions with free variables as arguments so that
they are bound to those values that are demanded for
evaluation, thus providing for function inversion.
There are three major implementations of Curry.

While the original implementation PAKCS (Portland
Aachen Kiel Curry System) compiles to Prolog, MCC
(Münster Curry Compiler) generates native code via a
standard C compiler. The Kiel Curry System (KiCS)
compiles Curry to Haskell aiming to provide nearly
as good performance for the purely functional part as
modern compilers for Haskell do. From these imple-
mentations only MCC will provide type classes in the
near future. Type classes are not part of the current
definition of Curry, though there is no conceptual con-
flict with the logic extensions.
Recent research aims at simplifying the compilation

scheme of KiCS which allows for using optimizations
when compiling the generated Haskell code. First tests
show that this significantly improves the performance
of Curry programs.
There have been research activities in the area of

functional logic programming languages for more than
a decade. Nevertheless, there are still a lot of inter-
esting research topics regarding more efficient compila-
tion techniques and even semantic questions in the area
of language extensions like encapsulation and function
patterns. Besides activities regarding the language it-
self, there is also an active development of tools con-
cerning Curry (e.g., the documentation tool Curry-
Doc, the analysis environment CurryBrowser, the ob-
servation debuggers COOSy and iCODE, the debugger
B.I.O. (http://www-ps.informatik.uni-kiel.de/currywiki/
tools/oracle_debugger), EasyCheck (→ 4.3.2), and Cy-
CoTest (→ 4.3.4)). Because Curry has a functional sub-
set, these tools can canonically be transferred to the

20

http://www.mathematik.uni-marburg.de/~eden
http://code.google.com/p/xhaskell/
http://code.google.com/p/xhaskell/
http://sulzmann.blogspot.com/2008/10/actors-with-multi-headed-receive.html
http://sulzmann.blogspot.com/2008/10/actors-with-multi-headed-receive.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/actor
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/actor
http://www-ps.informatik.uni-kiel.de/currywiki/tools/oracle_debugger
http://www-ps.informatik.uni-kiel.de/currywiki/tools/oracle_debugger

functional world.

Further reading

◦ http://www.curry-language.org/
◦ http://wiki.curry-language.org/

3.2.2 Agda

Report by: Nils Anders Danielsson
Participants: Ulf Norell and many others
Status: Actively developed

Do you crave for highly expressive types, but do not
want to resort to type-class hackery? Then Agda might
provide a view of what the future has in store for you.
Agda is a dependently typed functional program-

ming language (developed using Haskell). The lan-
guage has inductive families, i.e. GADTs which can be
indexed by values and not just types. Other goodies
include parameterized modules, mixfix operators, and
an interactive Emacs interface (the type checker can
assist you in the development of your code).
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
New since last time:

◦ Coinductive types (types with possibly infinite val-
ues).

◦ Case-split: The user interface can replace a pat-
tern variable with the corresponding constructor pat-
terns. You get one new left-hand side for every pos-
sible constructor.

◦ The foreign function interface now ensures that the
foreign (Haskell) code has types matching the Agda
code.

◦ Sized types, which can make it easier to explain why
your code is terminating, are currently being imple-
mented by Ulf Norell and Andreas Abel.

◦ Agda packages for Debian/Ubuntu have been pre-
pared by Liyang HU, and Kuragaki-san has con-
structed a new Agda installer for Windows.

◦ A new Emacs input method, which contains bindings
for many Unicode symbols, has been implemented by
Nils Anders Danielsson.

Further reading

The Agda Wiki: http://www.cs.chalmers.se/~ulfn/
Agda/

3.2.3 Clean

Participants: Software Technology Research Group at
Radboud University Nĳmegen

Clean is a general purpose, state-of-the-art, pure and
lazy functional programming language designed for
making real-world applications. Clean is the only func-
tional language in the world which offers uniqueness
typing. This type system makes it possible in a pure
functional language to incorporate destructive updates
of arbitrary data structures (including arrays) and to
make direct interfaces to the outside imperative world.
Here is a short list with notable features:

◦ Clean is a lazy, pure, higher-order functional pro-
gramming language with explicit graph rewriting se-
mantics.

◦ Although Clean is by default a lazy language one can
smoothly turn it into a strict language to obtain op-
timal time/space behavior: functions can be defined
lazy as well as (partially) strict in their arguments;
any (recursive) data structure can be defined lazy as
well as (partially) strict in any of its arguments.

◦ Clean is a strongly typed language based on an ex-
tension of the well-known Milner/Hindley/Mycroft
type inferencing/checking scheme including the com-
mon higher-order types, polymorphic types, abstract
types, algebraic types, synonym types, and existen-
tially quantified types.

◦ Type classes and type constructor classes are pro-
vided to make overloaded use of functions and oper-
ators possible.

◦ Clean offers records and (destructively updateable)
arrays and files.

◦ Clean has pattern matching, guards, list comprehen-
sions and array comprehensions and a lay-out sensi-
tive mode.

◦ The uniqueness type system makes it possible to de-
velop efficient applications. In particular, it allows
a refined control over the single threaded use of ob-
jects. Thus can influence the time and space behav-
ior of programs. The uniqueness type system can
be also used to incorporate destructive updates of
objects within a pure functional framework. It al-
lows destructive transformation of state information
and enables efficient interfacing to the non-functional
world (to C but also to I/O systems like X-Windows)
offering direct access to file systems and operating
systems.

◦ Clean offers a sophisticated I/O library with which
window based interactive applications (and the han-
dling of menus, dialogs, windows, mouse, keyboard,
timers, and events raised by sub-applications) can

21

http://www.curry-language.org/
http://wiki.curry-language.org/
http://www.cs.chalmers.se/~ulfn/Agda/
http://www.cs.chalmers.se/~ulfn/Agda/

be specified compactly and elegantly on a very high
level of abstraction.

◦ GUI-based programs written in Clean using the 0.8
I/O library can be ported without modification of
source code to any one of the many platforms we
support.

◦ There are many libraries available offering additional
functionality.

Further reading

http://clean.cs.ru.nl/

3.3 Type System / Program Analysis

3.3.1 Uniqueness Typing

Report by: Edsko de Vries
Participants: Rinus Plasmeĳer, David M Abrahamson
Status: Completed (thesis submitted)

An important feature of pure functional programming
languages is definiteness: if the same expression is used
in multiple places, it must have the same value every
time. A consequence of definiteness (sometimes also
referred to as referential transparency) is that functions
must not be allowed to modify their arguments, unless
it can be guaranteed that they have the sole reference to
that argument. This is the basis of uniqueness typing.
We have been developing a uniqueness type sys-

tem based on that of the language Clean (→ 3.2.3)
but with various improvements: no subtyping is re-
quired, the type language does not include inequality
constraints (types in Clean often involve implications
between uniqueness attributes), and types and unique-
ness attributes are both considered types (albeit of dif-
ferent kinds). This makes the type system sufficiently
similar to standard Hindley/Milner type systems that
(1) standard inference algorithms can be applied, and
(2) modern extensions such as arbitrary rank types and
generalized algebraic data types (GADTs) can easily be
incorporated.
Although our type system is inspired by Clean, it

is also relevant to Haskell, because the core uniqueness
type system we propose is very similar to Haskell’s core
type system.

Further reading

◦ Edsko de Vries, “Making Uniqueness Typing Less
Unique”, PhD thesis, forthcoming.

◦ Edsko de Vries, Rinus Plasmeĳer, and David Abra-
hamson, “Uniqueness Typing Simplified”, in Olaf
Chitil, Zoltán Horváth and Viktória Zsók (Eds.):
IFL 2007, LNCS 5083.

◦ Edsko de Vries, Rinus Plasmeĳer, and David Abra-
hamson, “Uniqueness Typing Redefined”, in Z.
Horváth, V. Zsók, and Andrew Butterfield (Eds.):
IFL 2006, LNCS 4449.

3.3.2 Free Theorems for Haskell

Report by: Janis Voigtländer
Participants: Florian Stenger, Daniel Seidel, Joachim

Breitner

Free theorems are statements about program behav-
ior derived from (polymorphic) types. Their origin is
the polymorphic lambda-calculus, but they have also
been applied to programs in more realistic languages
like Haskell. Since there is a semantic gap between the
original calculus and modern functional languages, the
underlying theory (of relational parametricity) needs to
be refined and extended. We aim to provide such new
theoretical foundations, as well as to apply the theoret-
ical results to practical problems. A recent application
paper is “Bidirectionalization for Free!” (POPL’09).
Also on the practical side, we maintain a library and

tools for generating free theorems from Haskell types,
originally implemented by Sascha Böhme. Both the li-
brary and a shell-based tool are available from Hackage
(as free-theorems and ftshell, respectively). There is
also a web-based tool at http://linux.tcs.inf.tu-dresden.
de/~voigt/ft. General features include:
◦ three different language subsets to choose from

◦ equational as well as inequational free theorems

◦ relational free theorems as well as specializations
down to function level

◦ support for algebraic data types, type synonyms and
renamings, type classes

22

http://clean.cs.ru.nl/
http://linux.tcs.inf.tu-dresden.de/~voigt/ft
http://linux.tcs.inf.tu-dresden.de/~voigt/ft

While the web-based tool is restricted to algebraic data
types, type synonyms, and type classes from Haskell
standard libraries, the shell-based tool also enables the
user to declare their own algebraic data types and so on,
and then to derive free theorems from types involving
those. A distinctive feature of the web-based tool is to
export the generated theorems in PDF format.
Joachim Breitner visited us in Dresden for two very

productive weeks. Among other things, he implemen-
ted new post-simplifications for the free theorems gen-
erator, hopefully to be included in the web-based tool
in the near future. He also wrote a web-based interface
to the library from the POPL’09 paper, accessible at
http://linux.tcs.inf.tu-dresden.de/~bff/cgi-bin/bff.cgi.

Further reading

http://wwwtcs.inf.tu-dresden.de/~voigt/project/

3.3.3 The Disciplined Disciple Compiler (DDC)

Report by: Ben Lippmeier
Status: alpha, active

Disciple is an explicitly lazy dialect of Haskell which is
being developed as part of my PhD project into effect
typing, optimization, and methods for combining strict
and lazy evaluation in the same language.
Effect typing is offered as a practical alternative to

state monads, and we suggest that state and destruc-
tive update are useful enough to deserve direct atten-
tion by the language and type system.
Disciple’s type system is similar to that used in

Haskell 98, with the addition of region, effect and clo-
sure information which is used to model the aliasing,
side effect and data sharing properties of functions.
This extra information is present in the source types,
but can be fully reconstructed and does not usually
place a burden on the programmer. The information
is also present in DDC’s core language, and is used to
guide code transformation style optimizations in the
presence of side effects. When the type system proves
that a particular expression is visibly pure, the full
gamut of optimizations can be applied.
The system also supports region, effect and closure

class constraints which are modeled after the (value)
type constraints of Haskell. A function’s type signature
can use these constraints to require certain objects to
be mutable, or certain function arguments to be pure.
Disciple also supports type directed field projections
(i.e., record syntax), and lazy code can be seamlessly
integrated with strict code without changing the shape
of types, or requiring explicit forcing by the program-
mer.
DDC is in alpha release and comes with some cute

example programs including a graphical n-body simula-
tion, a collision detection demo, a ray-tracer, and some
animated fractals. As I am currently writing up my
PhD thesis, due end of December 2008, work on DDC

has stalled for now. Development is likely to resume in
2nd quarter 2009. Although DDC is a full working sys-
tem, it has been primarily a research vehicle so far and
contains lots of cosmetic bugs. It is not yet “industrial
strength”.
DDC is open source and available from http://www.

haskell.org/haskellwiki/DDC. If you would like to help
out, then a detailed bug list is at http://code.google.
com/p/disciple. There are many interesting lines of re-
search in effect typing, the language is default strict,
and if you squint it looks just like Haskell code.

23

http://linux.tcs.inf.tu-dresden.de/~bff/cgi-bin/bff.cgi
http://wwwtcs.inf.tu-dresden.de/~voigt/project/
http://www.haskell.org/haskellwiki/DDC
http://www.haskell.org/haskellwiki/DDC
http://code.google.com/p/disciple
http://code.google.com/p/disciple

4 Tools

4.1 Scanning, Parsing, Transformations

4.1.1 Alex version 2

Report by: Simon Marlow
Status: stable, maintained

Alex is a lexical analyzer generator for Haskell, similar
to the tool lex for C. Alex takes a specification of a lex-
ical syntax written in terms of regular expressions, and
emits code in Haskell to parse that syntax. A lexical
analyzer generator is often used in conjunction with a
parser generator, such as Happy (→ 4.1.2), to build a
complete parser.
The latest release is version 2.3, released October

2008. Alex is in maintenance mode, we do not antici-
pate any major changes in the near future.
Changes in version 2.3 vs. 2.2:

◦ Works with GHC 6.10.1 and Cabal 1.6.

◦ Support for efficient lexing of strict bytestrings, by
Don Stewart.

◦ The monadUserState wrapper type was added by
Alain Cremieux.

Further reading

http://www.haskell.org/alex/

4.1.2 Happy

Report by: Simon Marlow
Status: stable, maintained

Happy is a tool for generating Haskell parser code from
a BNF specification, similar to the tool Yacc for C.
Happy also includes the ability to generate a GLR
parser (arbitrary LR for ambiguous grammars).
The latest release is 1.18.2, released 5 November

2008.
Changes in version 1.18.2 vs. 1.17:

◦ Macro-like parameterized rules were added by Iavor
Diatchki.

◦ Works with GHC 6.10.1 and Cabal 1.6.

◦ A couple of minor bugfixes: Happy does not get con-
fused by Template Haskell quoted names in code, and
a multi-word token type is allowed.

Further reading

Happy’s web page is at http://www.haskell.org/
happy/. Further information on the GLR extension
can be found at http://www.dur.ac.uk/p.c.callaghan/
happy-glr/.

4.1.3 UUAG

Report by: Arie Middelkoop
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell which makes
it easy to write catamorphisms (that is, functions that
do to any datatype what foldr does to lists). You can
define tree walks using the intuitive concepts of inher-
ited and synthesized attributes, while keeping the full
expressive power of Haskell. The generated tree walks
are efficient in both space and time.
New features are support for polymorphic abstract

syntax and higher-order attributes. With polymorphic
abstract syntax, the type of certain terminals can be
parameterized. Higher-order attributes are useful to
incorporate computed values as subtrees in the AST.
The system is in use by a variety of large and small

projects, such as the Haskell compiler EHC, the editor
Proxima for structured documents, the Helium com-
piler (→ 2.4), the Generic Haskell compiler, and UUAG
itself. The current version is 0.9.6 (April 2008), is ex-
tensively tested, and is available on Hackage.
We are currently improving the documentation, and

plan to introduce an alternative syntax that is closer
to the Haskell syntax.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/uuagc-0.9.6

4.2 Documentation

4.2.1 Haddock

Report by: David Waern
Status: experimental, maintained

Haddock is a widely used documentation-generation
tool for Haskell library code. Haddock generates docu-
mentation by parsing the Haskell source code directly

24

http://www.haskell.org/alex/
http://www.haskell.org/happy/
http://www.haskell.org/happy/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/uuagc-0.9.6
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/uuagc-0.9.6

and including documentation supplied by the program-
mer in the form of specially-formatted comments in
the source code itself. Haddock has direct support
in Cabal (→ 5.1), and is used to generate the docu-
mentation for the hierarchical libraries that come with
GHC, Hugs, and nhc98 (http://www.haskell.org/ghc/
docs/latest/html/libraries).
The latest release is version 2.2.2, released August 5

2008.
Recent changes:

◦ Support for GHC 6.8.3

◦ The Hoogle backend is back, thanks to Neil Mitchell.

◦ Show associated types in the documentation for class
declarations

◦ Show associated types in the documentation for class
declarations

◦ Show type family declarations

◦ Show type equality predicates

◦ Major bug fixes (#1 and #44)

◦ It is no longer required to specify the path to GHC’s
lib dir

◦ Remove unnecessary parenthesis in type signatures

Future plans

Currently, Haddock ignores comments on some lan-
guage constructs like GADTs and Associated Type syn-
onyms. Of course, the plan is to support comments for
these constructs in the future. Haddock is also slightly
more picky on where to put comments compared to the
0.x series. We want to fix this as well. Both of these
plans require changes to the GHC parser. We want
to investigate to what degree it is possible to decouple
comment parsing from GHC and move it into Haddock,
to not be bound by GHC releases.
Other things we plan to add in future releases:

◦ Support for GHC 6.10.1

◦ HTML frames (á la Javadoc)

◦ Support for documenting re-exports from other pack-
ages

Further reading

◦ Haddock’s homepage: http://www.haskell.org/
haddock/

◦ Haddock’s developer WiKi and Trac: http://trac.
haskell.org/haddock

4.2.2 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.
The program is stable and can take on large docu-

ments.
Since the last report, version 1.14 has been released.

This version is compatible with (and requires) Cabal
1.6. Apart from minor bugfixes, experimental sup-
port for typesetting Agda (→ 3.2.2) programs has been
added.

Further reading

http://www.cs.uu.nl/~andres/lhs2tex

4.3 Testing, Debugging, and Analysis

4.3.1 SmallCheck and Lazy SmallCheck

Report by: Matthew Naylor
Participants: Fredrik Lindblad, Colin Runciman
Status: active development

SmallCheck is a one-module lightweight testing library.
It adapts QuickCheck’s ideas of type-based generators
for test data and a class of testable properties. But in-
stead of testing a sample of randomly generated values,
it tests properties for all the finitely many values up to
some depth, progressively increasing the depth used.
Among other advantages, existential quantification is
supported, and generators for user-defined types can
follow a simple pattern and are automatically deriv-
able.
Lazy SmallCheck is like SmallCheck, but generates

partially-defined inputs that are progressively refined
as demanded by the property under test. The key
observation is that if a property evaluates to True or
False for a partially-defined input then it would also
do so for all refinements of that input. By not gen-
erating such refinements, Lazy SmallCheck may test
the same input-space as SmallCheck using significantly
fewer tests. Lazy SmallCheck’s interface is a subset of
SmallCheck’s, often allowing the two to be used inter-
changeably.

25

http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://trac.haskell.org/haddock
http://trac.haskell.org/haddock
http://www.cs.uu.nl/~andres/lhs2tex

Since the last HCAR, we have written a paper
about SmallCheck and Lazy SmallCheck and we have
released versions 0.4 and 0.3 respectively on Hack-
age. We have also squashed a bug in the Hugs im-
plementation of exception-handling which made Lazy
SmallCheck sometimes report “Control stack overflow”
(Hugs bug #84). And we have found a simple way to do
demand-driven generation of (first-order) functions in
Lazy SmallCheck, re-using the existing machinery for
demand-driven generation of data. The next release of
Lazy SmallCheck will incorporate this idea, and will
hopefully support existential quantification too. We
are still interested in improving and harmonizing the
two libraries and welcome comments and suggestions
from users.

Further reading

http://www.cs.york.ac.uk/fp/smallcheck/

4.3.2 EasyCheck

Report by: Jan Christiansen
Participants: Sebastian Fischer
Status: experimental

EasyCheck is an automatic test tool like QuickCheck or
SmallCheck (→ 4.3.1). It is implemented in the func-
tional logic programming language Curry (→ 3.2.1).
Although simple test cases can be generated from noth-
ing but type information in all mentioned test tools,
users have the possibility to define custom test-case
generators — and make frequent use of this possibility.
Nondeterminism — the main extension of functional-
logic programming over Haskell — is an elegant con-
cept to describe such generators. Therefore it is eas-
ier to define custom test-case generators in EasyCheck
than in other test tools. If no custom generator is pro-
vided, test cases are generated by a free variable which
non-deterministically yields all values of a type. More-
over, in EasyCheck, the enumeration strategy is inde-
pendent of the definition of test-case generators. Un-
like QuickCheck’s strategy, it is complete, i.e., every
specified value is eventually enumerated if enough test
cases are processed, and no value is enumerated twice.
SmallCheck also uses a complete strategy (breadth-first
search) which EasyCheck improves w.r.t. the size of the
generated test data. EasyCheck is distributed with the
Kiel Curry System (KiCS).

Further reading

http://www-ps.informatik.uni-kiel.de/currywiki/tools/
easycheck

4.3.3 checkers

Report by: Conal Elliott
Status: active development

Checkers is a library for reusable QuickCheck proper-
ties, particularly for standard type classes (class laws
and class morphisms). For instance, much of Reac-
tive (→ 6.5.2) can be specified and tested using just
these properties. Checkers also lots of support for ran-
domly generating data values.
For the past few months, this work has been gra-

ciously supported by Anygma.

Further reading

http://haskell.org/haskellwiki/checkers

4.3.4 CyCoTest

Report by: Sebastian Fischer
Participants: Herbert Kuchen
Status: experimental

The Curry Coverage Tester CyCoTest (pronounced like
psycho test) aims at testing declarative programs to the
bone. Unlike black-box test tools like QuickCheck, it
does not generate test cases from type information or
additional specifications. It rather uses the demand
of the program under test to narrow test cases lazily.
Narrowing is a generalization of reduction that allows
to compute with partial information. Evaluating a pro-
gram with narrowing and initially uninstantiated input
binds the input as much as demanded by the computa-
tion and non-deterministically computes a correspond-
ing result for each binding. The generated pairs of in-
and output form a set of test cases that reflects the
demand of the tested program.
The generated set of test cases can either be checked

by hand or using properties, i.e., functions with a
Boolean result. Using properties is convenient, but
sometimes it is hard to come up with a complete for-
mal specification of the tested program. Hence, errors
might remain undetected if an incomplete property is
used to evaluate the test cases. In order to lower the
burden of manual checking, we employ control- and
data-flow coverage information to minimize the set of
generated test cases. Test cases that do not cause new
code coverage are considered redundant and need not
be shown to the user. Although this bears the risk of
eliminating test cases that expose a bug, experiments
indicate that the employed coverage criteria suffice to
expose bugs in practice.
CyCoTest is implemented in and for the functional

logic programming language Curry (→ 3.2.1), which
provides narrowing for free. A Haskell implementa-
tion would be possible using ideas from the Kiel Curry
System (KiCS), which translates Curry programs into
Haskell programs.

26

http://www.cs.york.ac.uk/fp/smallcheck/
http://www-ps.informatik.uni-kiel.de/currywiki/tools/easycheck
http://www-ps.informatik.uni-kiel.de/currywiki/tools/easycheck
http://haskell.org/haskellwiki/checkers

Further reading

http://www-ps.informatik.uni-kiel.de/currywiki/tools/
cycotest

4.3.5 G∀st

Report by: Peter Achten
Participants: Pieter Koopman
Status: stable, maintained

G∀st is a fully automatic test system, written in
Clean (→ 3.2.3). Given a logical property, stated as
a function, it is able to generate appropriate test val-
ues, to execute tests with these values, and to evaluate
the results of these tests. In this respect G∀st is similar
to Haskell’s QuickCheck.
Apart from testing logical properties, G∀st is able to

test state based systems. In such tests, an extended
state machine (esm) is used instead of logical proper-
ties. This gives G∀st the possibility to test properties
in a way that is somewhat similar to model checking
and allows you to test interactive systems, such as web
pages or GUI programs. In order to validate and test
the quality of the specifying extended state machine,
the esmViz tool simulates the state machine and tests
properties of this esm on the fly.
G∀st is based on the generic programming techniques

of Clean which are very similar to Generic Haskell.
G∀st is distributed as a library in the standard Clean
distribution. This version is somewhat older than the
version described in recent papers.

Future plans

We would like to determine the quality of the tests for
instance by determining the coverage of tests. As a
next step we would like to use techniques from model
checking to direct the testing based on esms in G∀st.

Further reading

◦ http://www.cs.ru.nl/~pieter/gentest/gentest.html
◦ Papers on G∀st: http://www.st.cs.ru.nl/Onderzoek/

Publicaties/publicaties.html

4.3.6 Hat

Report by: Olaf Chitil
Participants: Malcolm Wallace
Status: maintenance

The Haskell tracing system Hat is based on the idea
that a specially compiled Haskell program generates a
trace file alongside its computation. This trace can
be viewed in various ways with several tools. Some
views are similar to classical debuggers for imperative
languages, some are specific to lazy functional language
features or particular types of bugs. All tools inter-
operate and use a similar command syntax.

Hat can be used both with nhc98 (→ 2.2) and
GHC (→ 2.1). Hat was built for tracing Haskell 98 pro-
grams, but it also supports some language extensions
(FFI, MPTC, fundeps, hierarchical libs). A tutorial
explains how to generate traces, how to explore them,
and how they help to debug Haskell programs.
During the last year only small bug fixes were com-

mitted to the Darcs repository, but several other up-
dates are also planned for the near future, including
new and improved trace-browsers. A recent student
project completed a Java-GUI viewer for traces, based
on the idea of timelines and search. We hope this can
be added to the repository soon.

Further reading

◦ http://www.haskell.org/hat
◦ darcs get http://darcs.haskell.org/hat
◦ Tracing and Debugging Functional Programs: http:

//www.cs.kent.ac.uk/~oc/tracing.html

4.3.7 Concurrent Haskell Debugger

Report by: Fabian Reck
Participants: Frank Huch, Jan Christiansen
Status: experimental

Programming concurrent systems is difficult and
error prone. The Concurrent Haskell Debugger
is a tool for debugging and visualizing Concur-
rent Haskell and STM programs. By simply im-
porting CHD.Control.Concurrent instead of Con-
trol.Concurrent and CHD.Control.Concurrent.STM in-
stead of Control.Concurrent.STM the forked threads
and their concurrent actions are visualized by a GUI.
Furthermore, when a thread performs a concurrent ac-
tion like writing an MVar or committing a transaction,
it is stopped until the user grants permission. This way
the user is able to determine the order of execution of
concurrent actions. Apart from that, the program be-
haves exactly like the original program.
An extension of the debugger can automatically

search for deadlocks and uncaught exceptions in the
background. The user is interactively led to a program
state where a deadlock or an exception was encoun-
tered. To use this feature, it is necessary to use a simple
preprocessor that comes with the package that is avail-
able at http://www.informatik.uni-kiel.de/~fre/chd/.
Another purpose of the preprocessor is to enrich the

source code with information for highlighting the next
concurrent action in a source code view.

Future plans

◦ provide a more powerful preprocessor that is able to
process imported modules

◦ add new views, like a visualization as a message se-
quence chart

27

http://www-ps.informatik.uni-kiel.de/currywiki/tools/cycotest
http://www-ps.informatik.uni-kiel.de/currywiki/tools/cycotest
http://www.cs.ru.nl/~pieter/gentest/gentest.html
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.haskell.org/hat
http://darcs.haskell.org/hat
http://www.cs.kent.ac.uk/~oc/tracing.html
http://www.cs.kent.ac.uk/~oc/tracing.html
http://www.informatik.uni-kiel.de/~fre/chd/

◦ allow to undo concurrent actions

Further reading

◦ http://www.informatik.uni-kiel.de/~fre/docs/thesis.
pdf (German diploma thesis)

◦ http://www.informatik.uni-kiel.de/~jac/data/
ICFP2004.pdf

4.3.8 Hpc

Report by: Andy Gill
Participants: Colin Runciman
Status: released and used

Haskell Program Coverage (HPC) is a set of tools
for understanding program coverage. It consists of a
source-to-source translator, an option (-fhpc) in ghc,
a stand alone post-processor (hpc), a post-processor
for reporting coverage, and an AJAX based interactive
coverage viewer.
Hpc has been remarkably stable over the lifetime of

ghc-6.8, with only a couple of minor bug fixes, includ-
ing better support for .hsc files. The source-to-source
translator is not under active development, and is look-
ing for a new home. The interactive coverage viewer,
which was under active development in 2007 at Ga-
lois, has now been resurrected at Hpc’s new home in
Kansas. Thank you Galois, for letting this work be re-
leased. The plan is to take the interactive viewer, and
merge it with GHCi’s debugging API, giving an AJAX
based debugging tool.

Contact

〈andygill@ku.edu〉

4.3.9 SourceGraph

Report by: Ivan Lazar Miljenovic
Status: Version 0.4

SourceGraph is a utility program aimed at helping
Haskell programmers visualize their code and per-
form simple graph-based analysis (representing func-
tions as nodes in the graphs and function calls as di-
rected edges). To do so, it utilizes the Graphalyze li-
brary (→ 5.8.4), which is designed as a general-purpose
graph-theoretic analysis library. These two pieces of
software are the focus of Ivan’s mathematical honors
thesis, “Graph-Theoretic Analysis of the Relationships
Within Discrete Data”, and are both available from
Hackage.
Whilst fully usable, SourceGraph is currently limited

in terms of input and output. It takes in the Cabal file
of the project, and then analyzes all .hs and .lhs files re-
cursively found in that directory. It utilizes Haskell-Src
with Extensions, and should thus parse all extensions
(with the current exception of Template Haskell, HaRP

and HSX); files requiring C Pre-Processing are as yet
unparseable, though this should be fixed in a future
release. However, all functions defined in Class dec-
larations and records are ignored due to difficulty in
determining which actual instance is meant. The final
report is then created in Html format in a “Source-
Graph” subdirectory of the project’s root directory.
Current analysis algorithms utilized include: alter-

native module groupings, whether a module should be
split up, root analysis, clique and cycle detection as well
as finding functions which can safely be compressed
down to a single function. Please note however that
SourceGraph is not a refactoring utility, and that its
analyses should be taken with a grain of salt: for exam-
ple, it might recommend that you split up a module,
because there are several distinct groupings of func-
tions, when that module contains common utility func-
tions that are placed together to form a library module
(e.g., the Prelude).

Further reading

◦ http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/SourceGraph

◦ http://code.haskell.org/SourceGraph

4.4 Development

4.4.1 Hoogle — Haskell API Search

Report by: Neil Mitchell
Status: v4.0

Hoogle is an online Haskell API search engine. It
searches the functions in the various libraries, both by
name and by type signature. When searching by name,
the search just finds functions which contain that name
as a substring. However, when searching by types it at-
tempts to find any functions that might be appropriate,
including argument reordering and missing arguments.
The tool is written in Haskell, and the source code is
available online. Hoogle is available as a web interface,
a command line tool, and a lambdabot (→ 6.12.2) plu-
gin.
Development of Hoogle was sponsored as part of the

Google Summer of Code this year. As a result, a new
version of Hoogle has been released with substantial
speed and accuracy improvements. The next task is to
generate Hoogle search information for all the libraries
on Hackage.

Further reading

http://haskell.org/hoogle

28

http://www.informatik.uni-kiel.de/~fre/docs/thesis.pdf
http://www.informatik.uni-kiel.de/~fre/docs/thesis.pdf
http://www.informatik.uni-kiel.de/~jac/data/ICFP2004.pdf
http://www.informatik.uni-kiel.de/~jac/data/ICFP2004.pdf
mailto: andygill at ku.edu
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/SourceGraph
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/SourceGraph
http://code.haskell.org/SourceGraph
http://haskell.org/hoogle

4.4.2 Leksah, Haskell IDE

Report by: Jürgen Nicklisch-Franken
Status: in development

Leksah is a Haskell IDE written in Haskell based on
Gtk+ and gtk2hs (→ 5.11.1). Leksah is a practical
tool to support the Haskell development process. It
is platform independent and should run on any plat-
form where GTK+, gtk2hs, and GHC can be installed.
(It is currently being tested on Windows and Linux but
it should work on the Mac. It only works with GHC.)
There are compelling reasons for a Haskell IDE writ-

ten in Haskell. First and most importantly, Haskell is
different from mainstream imperative and object ori-
ented languages and a dedicated IDE may exploit this
specialness. Second the integration with an existing
tool written in a different language has to solve the
problem of integration of different programming lan-
guages/paradigms.
Currently Leksah offers features like jumping to def-

inition for a name, integration of Cabal (→ 5.1) for
building, Haskell source editor with “source candy”,
configurable keymaps, . . . This list will (hopefully) ex-
pand quickly.
The development of Leksah started in June 2007

and the first alpha version was released February 2008.
Contributions of all kind are welcome.

Further reading

http://leksah.org/

4.4.3 EclipseFP — Haskell support for the Eclipse
IDE

Report by: Leif Frenzel
Status: alpha

The Eclipse platform is an extremely extensible frame-
work for IDEs, developed by an Open Source Project.
Our project extends it with tools to support Haskell
development.
The aim is to develop an IDE for Haskell that pro-

vides the set of features and the user experience known
from the Eclipse Java IDE (the flagship of the Eclipse
project), and integrates a broad range of Haskell de-
velopment tools. Long-term goals include support
for language-aware IDE features, like refactoring and
structural search.
Over the past year, a new subproject called Cohatoe

has developed a framework that allows us to implement
Eclipse Plugins partly in Haskell. We are currently re-
implementing and extending EclipseFP functionality in
Haskell, using libraries such as Cabal (→ 5.1) and the
GHC API (→ 2.1).

Further reading

◦ http://eclipsefp.sf.net

◦ http://leiffrenzel.de/eclipse/wiki/
◦ http://lists.sourceforge.net/lists/listinfo/

eclipsefp-develop

4.4.4 HEAT: The Haskell Educational
Advancement Tool

Report by: Olaf Chitil

Heat is an interactive development environment (IDE)
for learning and teaching Haskell. Using a separate edi-
tor and interpreter provides many distracting obstacles
for inexperienced students learning a programming lan-
guage; for example, they have to keep the versions in
editor, interpreter, and in the file system in sync. Pro-
fessional interactive development environments, how-
ever, confuse and distract with their excessive features.
Hence Heat was designed for novice students learning
the functional programming language Haskell. Based
on teaching experience, Heat provides a small num-
ber of supporting features and is easy to use. Heat is
portable, small, and works on top of the Haskell inter-
preter Hugs.

Heat provides the following features:
◦ Editor for a single module with syntax-highlighting

and matching brackets.

◦ Shows the status of compilation: non-compiled; com-
piled with or without error.

◦ Interpreter console that highlights the prompt and
error messages.

◦ If compilation yields an error, then the source line
is highlighted and additional error explanations are
provided.

◦ Shows a program summary in a tree structure, giving
definitions of types and types of functions . . .

◦ Automatic checking of all (Boolean) properties of a
program; results shown in summary.

Heat is implemented in Java. The older version 1.1
which has been used in teaching functional program-
ming at the University of Kent since 2006 is available
from the webpage. Version 3.0 will be published very
soon.

29

http://leksah.org/
http://eclipsefp.sf.net
http://leiffrenzel.de/eclipse/wiki/
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop

Further reading

http://www.cs.kent.ac.uk/projects/heat/

4.4.5 Haskell Mode Plugins for Vim

Report by: Claus Reinke
Participants: Haskell & Vim users
Status: maintenance mode

The Haskell mode plugins for Vim offer some IDE-style
functionality for editing Haskell code in Vim, including
several insert mode completions (based on identifiers
currently in scope, on identifiers documented in the
central Haddock indices, on tag files, or on words ap-
pearing in current and imported sources), quickfix mode
(call compiler, list errors in quickfix window, jump to
error locations in source window), inferred type tooltips
(persisted from last successful :make, so you can still
see some types after introducing errors, or use types to
guide editing, e.g., function parameter order), various
editing helpers (insert import statement, type declara-
tion or module qualifier for id under cursor, expand
implicit into explicit import statement, add option and
language pragmas, . . .), and direct access to the Had-
dock documentation for the id under cursor.
The plugins are distributed as a simple vimball

archive, including help file (after installation, try
:help haskellmode). They derive their functional-
ity and semantic information from GHC/GHCi, from
Haddock-generated documentation and indices (→
4.2.1), and from Vim’s own configurable program edit-
ing support. For details of Haskell mode features,
see the haskellmode.txt help file, for change log,
see haskellmode-files.txt (for more general infor-
mation, see Vim’s excellent built-in :help, or browse
the help files online at http://vimdoc.sourceforge.net/
htmldoc/usr_toc.html).
These are not the only Haskell-related plugins for

Vim — please add your own tricks and tips at
haskell.org (syntax-coloring works out of the box, other
scripts deal with indentation, . . .).
The haskellmode plugins for Vim are currently in

maintenance mode, with infrequent updates and bug
fixes, and the occasional new feature or improvement
of older code (please let me know if anything does not
work as advertised!).

Further reading

◦ Haskell Mode Plugins for Vim: http://www.cs.kent.
ac.uk/~cr3/toolbox/haskell/Vim/

◦ haskell.org section listing these and other Vim
files: http://www.haskell.org/haskellwiki/Libraries_
and_tools/Program_development#Vim

4.4.6 yi

Report by: Jean-Philippe Bernardy
Participants: Don Stewart
Status: active development

Yi is an editor written in Haskell and extensible in
Haskell. We leverage the expressiveness of Haskell to
provide an editor which is powerful and easy to extend.
We have recently made Yi much more accessible. On

Unix systems, it can be deployed using a single cabal
install command. We also polished the user interface
and behavior to facilitate the transition from emacs or
vim.
Yi features:

◦ Key-bindings for emacs and vim, written as extensi-
ble parsers;

◦ Vty, Gtk2Hs frontends;

◦ Syntax highlighting for Haskell and other languages;

◦ XMonad-style static configuration;

◦ Support of Linux, MacOS, and Windows platforms.

◦ Special support for Haskell: layout-aware edition,
paren-matching, GHCi interface, Cabal build inter-
face, . . .

We are currently working on the following fronts:

◦ Integration with Cabal and GHC API;

◦ Pango and Cocoa frontends;

◦ CUA key-bindings

Further reading

◦ More information can be found at: http://haskell.
org/haskellwiki/Yi

◦ The source repository is available: darcs get
http://code.haskell.org/yi/

4.4.7 HaRe — The Haskell Refactorer

Report by: Huiqing Li
Participants: Chris Brown, Chaddaï Fouché, Claus

Reinke, Simon Thompson

Refactorings are source-to-source program transforma-
tions which change program structure and organiza-
tion, but not program functionality. Documented in
catalogs and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.
Our project, Refactoring Functional Programs, has

as its major goal to build a tool to support refactorings

30

http://www.cs.kent.ac.uk/projects/heat/
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/Vim/
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/Vim/
http://www.haskell.org/haskellwiki/Libraries_and_tools/Program_development#Vim
http://www.haskell.org/haskellwiki/Libraries_and_tools/Program_development#Vim
http://haskell.org/haskellwiki/Yi
http://haskell.org/haskellwiki/Yi
http://code.haskell.org/yi/

in Haskell. The HaRe tool is now in its fourth major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalization and a number of others,
are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the
module where the change is initiated. The system also
contains a set of data-oriented refactorings which to-
gether transform a concrete data type and associated
uses of pattern matching into an abstract type and calls
to assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately.
In order to allow users to extend HaRe themselves,

HaRe includes an API for users to define their own
program transformations, together with Haddock (→
4.2.1) documentation. Please let us know if you are
using the API.
HaRe 0.4, which was released earlier this year, only

compiles with GHC 6.6.1 and GHC 6.8.2. New refac-
torings in HaRe 0.4 include a suite of slicing utilities,
adding/removing a data constructor, converting a data
type into a newtype, adding/removing a field, etc.
Snapshots of HaRe are available from our webpage,

as are related presentations and publications from
the group (including LDTA’05, TFP’05, SCAM’06,
PEPM’08, and Huiqing’s PhD thesis). The final re-
port for the project appears there, too.

Recent developments

◦ More structural and datatype-based refactorings
have been studied by Chris Brown, including trans-
formation between let and where, generative fold-
ing, introducing pattern matching, and introducing
case expressions;

◦ Chris has also been looking into duplicated code de-
tection and elimination support for Haskell programs
as part of his PhD research;

◦ Chaddaï Fouché started to work on the porting of
HaRe to GHC API (→ 2.1) during the summer; this
work is ongoing.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

4.4.8 DarcsWatch

Report by: Joachim Breitner
Status: working

DarcsWatch is a tool to track the state of Darcs (→
6.1.1) patches that have been submitted to some
project, usually by using the darcs send command.
It allows both submitters and project maintainers to

get an overview of patches that have been submitted
but not yet applied.
During the last six months, development activity has

been low, but DarcsWatch has been successfully used in
the xmonad project (→ 6.1.2) to review unapplied and
possibly forgotten patches before a release. Still, a good
way to easily mark patches as obsolete or retracted has
to be found.

Further reading

◦ http://darcswatch.nomeata.de/
◦ http://darcs.nomeata.de/darcswatch/documentation.

html

4.4.9 cpphs

Report by: Malcolm Wallace
Status: stable, maintained

Cpphs is a robust drop-in Haskell replacement for the
C pre-processor. It has a couple of benefits over the
traditional cpp — you can run it when no C compiler
is available (e.g., on Windows); and it understands the
lexical syntax of Haskell, so you do not get tripped up
by C-comments, line-continuation characters, primed
identifiers, and so on. (There is also a pure text mode
which assumes neither Haskell nor C syntax, for even
greater flexibility.)
Cpphs can also unliterate .lhs files during prepro-

cessing, and you can install it as a library to call from
your own code, in addition to the stand-alone utility.
The current release is 1.6: recent bugfixes have been

small — the major changes are to add new command-
line options –include and –strip-eol.

Further reading

http://haskell.org/cpphs

31

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://darcswatch.nomeata.de/
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.nomeata.de/darcswatch/documentation.html
http://haskell.org/cpphs

5 Libraries

5.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the Common Architecture for Building Appli-
cations and Libraries. It defines a common interface
for defining and building Haskell packages. It is imple-
mented as a Haskell library and associated tools which
allow developers to easily build and distribute pack-
ages.
Hackage is an online database of Cabal packages

which can be interactively queried via the website and
client-side software such as cabal-install. Hackage en-
ables end-users to download and install Cabal pack-
ages.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent progress

Since the last HCAR we have released Cabal-1.4 and
1.6. There have also been releases of cabal-install which
is now at version 0.6.
The Cabal-1.4 and 1.6 releases contained a num-

ber of incremental improvements but nothing earth-
shattering. Cabal-1.4 contained the bulk of the im-
provements but remained compatible with Cabal-1.2.
The 1.6 release comes with GHC 6.10 and contains
some new features that are not backwards compatible.
The cabal-install tool has matured significantly since

the last report and is now mostly usable for many users.
It replaces runhaskell Setup.hs which had been the
primary interface for most users previously. The major
advantage is that it simplifies the process of download-
ing and installing collections of inter-dependent pack-
ages from Hackage.
Hackage is getting near to its second birthday. At the

time of writing, 234 users have uploaded 2306 versions
of 820 packages. This represents a substantial amount
of Haskell code and indeed a substantial amount of code
re-use.
In the next few months we expect to upgrade Hack-

age with a new implementation. There should be no
disruption for users or package maintainers. The new
implementation uses HAppS rather than Apache+CGI.
The main reason for the change is to make it easier to
add the new features that users have been asking for.

We also expect it will have a new layout and appear-
ance thanks to the talented people from Tupil (→ 7.8).
We are also hoping to use Hoogle (→ 4.4.1) as the pri-
mary search interface.

Google Summer of Code projects

Andrea Vezzosi completed his project to build a “make-
like” dependency framework for the Cabal library. Part
of this can now be integrated to make Cabal work bet-
ter with pre-processors. To make development easier,
Andrea started on an external hbuild tool. The aim
is to improve it, demonstrate it on real projects, and
eventually replace much of the Cabal internals. One
remaining challenge is to develop some high level com-
binators for the dependency infrastructure.
Neil Mitchell completed his project on Hoogle 4 (→

4.4.1). As mentioned above, the next step is to use it
in the new Hackage server.

Looking forward

There is huge potential for Hackage to help us man-
age and improve the community’s package collection.
cabal-install is now able to report build results and the
new Hackage server implementation can accept them.
This should provide us with a huge amount of data on
which packages work in which environments and con-
figurations. More generally there is the opportunity
to collect all sorts of useful metrics on the quality of
packages.
As for Cabal, it now has the feature-set that en-

ables it to support the vast majority of simple pack-
ages. The next challenge is large existing projects
which have more complex requirements for a config-
uration and build system. Now may be the time to
take a step back and discuss a new design document
for Cabal 2.0.

People

We would like to thank the people who contributed to
the last round of development work. Thanks also to the
people who have followed development and reported
bugs and feature requests.
We have ambitious plans and there is plenty of work

to do, but not quite enough volunteer time to do it all.
Now would be an excellent time to get involved in this
central piece of the Haskell infrastructure.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal

32

http://www.haskell.org/cabal

◦ Hackage package collection: http://hackage.haskell.
org/

◦ Bug tracker: http://hackage.haskell.org/trac/
hackage/

5.2 Haskell Platform

Report by: Duncan Coutts

Background

The Haskell Platform (HP) is the name of a new
“blessed” set of libraries and tools on which to build
further Haskell libraries and applications. It takes the
best packages from the over 800 on Hackage (→ 5.1).
It is intended to provide a comprehensive, stable, and
quality tested base for Haskell projects to work from.
Historically, GHC has shipped with a collection of

packages under the name extralibs. The intention in
future is for GHC to get out of the business of shipping
an entire platform and for this role to be transferred to
the Haskell Platform.

Looking forward

We expect the first release of the platform to come out
a few weeks after the release of GHC-6.10.1 (→ 2.1).
Subsequent releases will be on a 6 month schedule. The
first release will contain just the packages from the old
extralibs collection, plus cabal-install (→ 5.1).
We are looking for involvement from the community

to decide what procedures we should use and what
level of quality we should demand for new additions
to the platform. The discussion will take place on the
libraries@haskell.org mailing list.

Further reading

http://haskell.org/haskellwiki/Haskell_Platform

5.3 Auxiliary Libraries

5.3.1 libmpd

Report by: Ben Sinclair
Participants: Joachim Fasting
Status: maintained

libmpd is a client implementation of the MPD music
playing daemon’s network protocol. The interface has
mostly stabilized and is usable. In version 0.3.1 some
bugs have been addressed to fix the automatic recon-
nection feature and to be more permissive with data
from the server.

Further reading

The development web page is at http://turing.une.

edu.au/~bsinclai/code/libmpd-haskell/ and MPD can be
found at http://www.musicpd.org/.

5.3.2 gravatar

Report by: Don Stewart
Status: active development

Gravatars (http://gravatar.com) are globally unique im-
ages associated with an email address, widely used in
social networking sites. This library lets you find the
URL of a gravatar image associated with an email ad-
dress.

Further reading

◦ Source and documentation can be found on Hackage.
◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/
gravatar/

5.3.3 mersenne-random

Report by: Don Stewart
Status: active development

The Mersenne twister is a pseudorandom number gen-
erator developed by Makoto Matsumoto and Takuji
Nishimura that is based on a matrix linear recurrence
over a finite binary field. It provides for fast generation
of very high quality pseudorandom numbers.
This library uses SFMT, the SIMD-oriented Fast

Mersenne Twister, a variant of Mersenne Twister that
is much faster than the original. It is designed to be
fast when it runs on 128-bit SIMD. It can be compiled
with either SSE2 OR PowerPC AltiVec support, to take
advantage of these instructions.
By default the period of the function is 219937 − 1,

however, you can compile in other defaults. Note that
this algorithm on its own is not cryptographically se-
cure.

Further reading

◦ Source and documentation can be found on Hackage.
◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/
mersenne-random/

5.3.4 cmath

Report by: Don Stewart
Status: active development

cmath is a complete, efficient binding to the standard
C math.h library, for Haskell.

Further reading

◦ Source and documentation can be found on Hackage.

33

http://hackage.haskell.org/
http://hackage.haskell.org/
http://hackage.haskell.org/trac/hackage/
http://hackage.haskell.org/trac/hackage/
http://haskell.org/haskellwiki/Haskell_Platform
http://turing.une.edu.au/~bsinclai/code/libmpd-haskell/
http://turing.une.edu.au/~bsinclai/code/libmpd-haskell/
http://www.musicpd.org/
http://gravatar.com
http://code.haskell.org/~dons/code/gravatar/
http://code.haskell.org/~dons/code/gravatar/
http://code.haskell.org/~dons/code/mersenne-random/
http://code.haskell.org/~dons/code/mersenne-random/

◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/
cmath/

5.3.5 hmatrix

Report by: Alberto Ruiz
Status: stable, maintained

This library provides a purely functional interface to
linear algebra and other numerical computations, inter-
nally implemented using GSL, BLAS, and LAPACK.
The most common matrix computations are already
available: eig, svd, chol, qr, hess, schur, lu, pinv,
expm, etc. There are also functions for numeric in-
tegration and differentiation, nonlinear minimization,
polynomial root finding, and many GSL special func-
tions. The latest stable version can be found on Hack-
age.
Recent developments include low level optimizations

contributed by Don Stewart and safe in-place updates
using the ST monad.

Further reading

http://www.hmatrix.googlepages.com

5.3.6 The Neon Library

Report by: Jurriaan Hage

As part of his master thesis work, Peter van Keeken im-
plemented a library to data mine logged Helium (→ 2.4)
programs to investigate aspects of how students pro-
gram Haskell, how they learn to program, and how
good Helium is in generating understandable feedback
and hints. The software can be downloaded from http:
//www.cs.uu.nl/wiki/bin/view/Hage/Neon, which also
gives some examples of output generated by the sys-
tem. The downloads only contain a small sample of
loggings, but it will allow programmers to play with it.
The recent news is that a paper about Neon has

been (conditionally) accepted at SLE (1st Conference
on Software Language Engineering, mainly people into
UML, Java, and modeling can be found there), where it
came under the heading of Tools for Language Usage.
I have been considering to write a research proposal
for actually performing some of these analyses (which I
hope to get done before January), and with a publica-
tion under the belt this may actually work. I am still
looking for know-how in the empirical arena.

5.3.7 unamb

Report by: Conal Elliott
Status: active development

Unamb is a package containing the unambiguous choice
operator unamb, which wraps thread racing up in a

purely functional, semantically simple wrapper. Given
any two arguments u and v that agree unless bottom,
the value of unamb u v is the more terminating of u
and v. Operationally, the value of unamb u v becomes
available when the earlier of u and v does. The agree-
ment precondition ensures unamb’s referential trans-
parency.

Further reading

http://haskell.org/haskellwiki/unamb

5.4 Processing Haskell

5.4.1 hint

Report by: Daniel Gorin
Status: active
Current release: 0.2.5

This library defines a Haskell Interpreter monad. It al-
lows to load Haskell modules, browse them, type-check
and evaluate strings with Haskell expressions, and even
coerce them into values. The operations are thread-safe
and type-safe (even the coercion of expressions to val-
ues).
It may be useful for those who need GHCi-like func-

tionality in their programs but do not want to mess
with the GHC-API innards. Additionally, unlike the
latter, hint provides an API that is consistent across
GHC versions.
Works with GHC 6.6.x and 6.8.x. Upcoming version

0.3.0.0 will also work with GHC 6.10

Further reading

The latest stable version can be downloaded from Hack-
age.

5.4.2 mueval

Report by: Gwern Branwen
Participants: Andrea Vezzosi, Daniel Gorin, Spencer

Janssen
Status: active development

Mueval is a code evaluator for Haskell; it employs the
GHC API as provided by the Hint library (→ 5.4.1).
It uses a variety of techniques to evaluate arbitrary
Haskell expressions safely & securely. Since it was
begun in June 2008, tremendous progress has been
made; it is currently used in Lambdabot (→ 6.12.2)
live in #haskell). Mueval can also be called from the
command-line.
Mueval features:

◦ A comprehensive test-suite of expressions which
should and should not work

34

http://code.haskell.org/~dons/code/cmath/
http://code.haskell.org/~dons/code/cmath/
http://www.hmatrix.googlepages.com
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://haskell.org/haskellwiki/unamb

◦ Defeats all known attacks

◦ Optional resource limits and module imports

◦ The ability to load in definitions from a specified file

◦ Parses Haskell expressions with haskell-src-exts and
tests against black- and white-lists

◦ Cabalized

We are currently working on the following:

◦ Refactoring modules to render Mueval more useful
as a library

◦ Removing the POSIX-only requirement

Further reading

The source repository is available: darcs get
http://code.haskell.org/mubot/

5.4.3 hscolour

Report by: Malcolm Wallace
Status: stable, maintained

HsColour is a small command-line tool (and Haskell
library) that syntax-colorizes Haskell source code for
multiple output formats. It consists of a token lexer,
classification engine, and multiple separate pretty-
printers for the different formats. Current supported
output formats are ANSI terminal codes, HTML (with
or without CSS), LaTeX, and IRC chat codes. In all
cases, the colors and highlight styles (bold, underline,
etc.) are configurable. It can additionally place HTML
anchors in front of declarations, to be used as the target
of links you generate in Haddock (→ 4.2.1) documen-
tation.
HsColour is widely used to make source code in blog

entries look more pretty, to generate library documen-
tation on the web, and to improve the readability of
GHC’s intermediate-code debugging output. The cur-
rent version is 1.10, which simply improves the title
element on HTML output.

Further reading

http://www.cs.york.ac.uk/fp/darcs/hscolour

5.5 Parsing and Transforming

5.5.1 pcre-light

Report by: Don Stewart
Status: active development

A small, efficient, and portable regex library for Perl 5
compatible regular expressions. The PCRE library is
a set of functions that implement regular expression

pattern matching using the same syntax and semantics
as Perl 5.

Further reading

◦ Source and documentation can be found on Hackage.
◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/
pcre-light/

5.5.2 HStringTemplate

Report by: Sterling Clover

HStringTemplate is a port of the StringTemplate li-
brary to Haskell. StringTemplate is a templating sys-
tem that enforces strict model-view separation via a
Turing-incomplete grammar that nonetheless provides
powerful recursive constructs. The library provides
template grouping and inheritance, as well as escaping.
It is especially suited for rapid and iterative develop-
ment of web applications. In the last period, a series
of minor bugs in options handling have been resolved,
but the code is otherwise stable and finding occasional
use. HStringTemplate is currently at release 0.4 and is
available via Hackage.

Further reading

◦ http://www.cs.usfca.edu/~parrt/papers/mvc.
templates.pdf

◦ HStringTemplate:
http://fmapfixreturn.wordpress.com

◦ StringTemplate: http://www.stringtemplate.org/

5.5.3 CoreErlang

Report by: Henrique Ferreiro García
Participants: David Castro Pérez
Status: Parses and pretty-prints all of Core Erlang

CoreErlang is a Haskell library which consists of a
parser and pretty-printer for the intermediate language
used by Erlang. The parser uses the Parsec library, and
the pretty-printer was modeled after the correspond-
ing module of the haskell-src package. It also exposes
a Syntax module which allows easy manipulation of
terms.
It is able to parse and pretty-print all of Core Er-

lang. Remaining work includes customizing the pretty
printer and refining the syntax interface.

Further reading

◦ It can be downloaded from hackage
◦ A darcs repository is available at: http://code.

haskell.org/CoreErlang

35

http://code.haskell.org/mubot/
http://www.cs.york.ac.uk/fp/darcs/hscolour
http://code.haskell.org/~dons/code/pcre-light/
http://code.haskell.org/~dons/code/pcre-light/
http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf
http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf
http://fmapfixreturn.wordpress.com
http://www.stringtemplate.org/
http://code.haskell.org/CoreErlang
http://code.haskell.org/CoreErlang

5.5.4 parse-dimacs: A DIMACS CNF Parser

Report by: Denis Bueno
Status: Version 1.1

Parse-dimacs is a Parsec parser for a common file
format — DIMACS — describing conjunctive normal
form (CNF) formulas. CNF formulas are typically used
as input to satisfiability solvers.
The parser is available from Hackage:

http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/parse-dimacs
The next release will concentrate on optimization,

specifically for large CNF formulas. The interface is
simple and should be stable.

5.5.5 The X-SAIGA Project

Report by: Richard A. Frost
Participants: Rahmatullah Hafiz, Paul Callaghan
Status: code available

The goal of the X-SAIGA project is to create algo-
rithms and implementations which enable language
processors (recognizers, parsers, interpreters, transla-
tors, etc.) to be constructed as modular and efficient
embedded eXecutable SpecificAtIons of GrAmmars.
To achieve modularity, we have chosen to base our

algorithms on top-down parsing. To accommodate am-
biguity, we implement inclusive choice through back-
tracking search. To achieve polynomial complexity, we
use memoization. We have developed an algorithm
which accommodates direct left-recursion using curtail-
ment of search. Indirect left recursion is also accommo-
dated using curtailment together with a test to deter-
mine whether previously computed and memoized re-
sults may be reused depending on the context in which
they were created and the context in which they are
being considered for reuse.
The algorithm is described more fully in Frost, R.,

Hafiz, R., and Callaghan, P. (2007) Modular and Effi-
cient Top-Down Parsing for Ambiguous Left-Recursive
Grammars. Proceedings of the 10th International
Workshop on Parsing Technologies (IWPT), ACL-
SIGPARSE. Pages: 109–120, June 2007, Prague. (http:
//cs.uwindsor.ca/~hafiz/iwpt-07.pdf)
We have implemented our algorithms, at various

stages of their development, in Miranda (up to 2006)
and in Haskell (from 2006 onwards). A description
of a Haskell implementation of our 2007 algorithm
can be found in Frost, R., Hafiz, R., and Callaghan,
P. (2008) Parser Combinators for Ambiguous Left-
Recursive Grammars. Proceedings of the 10th Inter-
national Symposium on Practical Aspects of Declara-
tive Languages (PADL), Paul Hudak, David Scott War-
ren (Eds.): Practical Aspects of Declarative Languages,
10th International Symposium, PADL 2008, San Fran-
cisco, CA, USA, January 7–8, 2008. Springer 2008,
LNCS 4902, 167–181. (http://cs.uwindsor.ca/~hafiz/
PADL_PAPER_FINAL.pdf)

The X-SAIGA website contains more information,
links to other publications, proofs of termination and
complexity, and Haskell code of the development ver-
sion. (http://cs.uwindsor.ca/~hafiz/proHome.html)
We are currently extending our algorithm and imple-

mentation to accommodate executable specifications of
fully-general attribute grammars.
One of our long-term goals is to use the X-SAIGA

software to construct natural-language applications as
executable specifications of attribute grammars and de-
ploy them on the Public-Domain SpeechWeb, which is
a related project of ours that is also funded by the
Natural Science and Engineering Research Council of
Canada (NSERC). More information on the Speech-
Web project, including details of how to access our pro-
totype Public-Domain SpeechWeb by voice, and how to
build and deploy your own speech applications, can be
found at http://www.myspeechweb.org.

5.5.6 InterpreterLib

Report by: Nicolas Frisby
Participants: Garrin Kimmell, Mark Snyder, Philip

Weaver, Perry Alexander
Maintainer: Nicolas Frisby
Status: beta, actively maintained

The InterpreterLib library is a collection of modules
for constructing composable, monadic interpreters in
Haskell. The library provides a collection of functions
and type classes that implement semantic algebras in
the style of Hutton and Duponcheel. Datatypes for re-
lated language constructs are defined as functors and
composed using a higher-order sum functor. The full
AST for a language is the least fixed point of the sum
of its constructs’ functors. To denote a term in the
language, a sum algebra combinator composes alge-
bras for each construct functor into a semantic algebra
suitable for the full language, and the catamorphism
introduces recursion. Another piece of InterpreterLib
is a novel suite of algebra combinators conducive to
monadic encapsulation and semantic re-use. The li-
brary also implements a specialization of the SmashA
(→ 1.5.6) generic programming technique to support
generic default algebras and to override those defaults
with functor-specific behavior. The Algebra Compiler,
an ancillary preprocessor derived from polytypic pro-
gramming principles, generates functorial boilerplate
Haskell code from minimal specifications of language
constructs. As a whole, the InterpreterLib library en-
ables rapid prototyping, re-use, and simplified mainte-
nance of language processors.
The Oread (→ 6.9.4) implementation employs Inter-

preterLib.
InterpreterLib is available for download at the link

provided below. Version 1.0 of InterpreterLib was re-
leased in April 2007.

36

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parse-dimacs
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parse-dimacs
http://cs.uwindsor.ca/~hafiz/iwpt-07.pdf
http://cs.uwindsor.ca/~hafiz/iwpt-07.pdf
http://cs.uwindsor.ca/~hafiz/PADL_PAPER_FINAL.pdf
http://cs.uwindsor.ca/~hafiz/PADL_PAPER_FINAL.pdf
http://cs.uwindsor.ca/~hafiz/proHome.html
http://www.myspeechweb.org

Further reading

http://www.ittc.ku.edu/Projects/SLDG/projects/
project-InterpreterLib.htm

Contact

〈nfrisby@ittc.ku.edu〉

5.5.7 KURE

Report by: Andy Gill
Status: alpha

The Kansas University Rewrite Engine (KURE, pro-
nounced cure) is a DSL for writing rewrite systems
over grammars with scope. It was used (along with
Template Haskell) to provide the basic rewrite abili-
ties inside HERA (Haskell Equational Reasoning As-
sistant). It has been recently rewritten and will be
published on hackage shortly. KURE provides combi-
nators for ordering the application of an abstract type,
Rewrite, combinators for building primitive rewrites,
and combinators performing rewrite searches. We plan
to use KURE to explore some rewrites inside our low-
level hardware description language Oread (→ 6.9.4),
as well as power the next version of HERA.

Contact

〈andygill@ku.edu〉

5.5.8 Typed Transformations of Typed Abstract
Syntax (TTTAS)

Report by: Arthur Baars
Participants: Doaitse Swierstra, Marcos Viera
Status: actively developed

The TTTAS library, which has an arrow like interface,
supports the construction of analyses and transforma-
tions in a typed setting. The library uses typed abstract
syntax to represent fragments of embedded programs
containing variables and binding structures, while pre-
serving the idea that the type system of the host lan-
guage is used to emulate the type system of the em-
bedded language. Internally the library maintains a
collection of binding structures of the EDSL. A trans-
formation may introduce new bindings, and the binding
may even be mutually recursive. The library ensures
that in the end the bindings resulting from a transfor-
mation are consistent.

Introduction

Advantages of embedded domain-specific languages
(EDSLs) are that one does not have to implement a
separate type system nor an abstraction mechanism,
since these are directly borrowed from the host lan-
guage. Straightforward implementations of embedded

domain-specific languages map the semantics of the em-
bedded language onto a function in the host language.
The semantic mappings are usually compositional, i.e.,
they directly follow the syntax of the embedded lan-
guage.
One of the questions which arises is whether conven-

tional compilation techniques, such as global analysis
and resulting transformations, can be applied in the
context of EDSLs.
Run-time transformations on the embedded language

can have a huge effect on performance. In previous
work we present a case study comparing the Read
instances generated by Haskells deriving construct
with instances on which run-time grammar transfor-
mations (precedence resolution, left-factorization and
left-corner transformation) have been applied.

Background

The approach taken in TTTAS was proposed by Arthur
Baars, Doaitse Swierstra, and Marcos Viera.
The library is employed to implement the transfor-

mations used in the Haskell 2008 paper “Haskell, Do
You Read Me? Constructing and Composing Efficient
Top-down Parsers at Runtime” (→ 5.5.9).

Future plans

A first version of TTTAS will soon be released on Hack-
age.

Further reading

More information can be found on the TTTAS home
page.

5.5.9 Grammar Based Read (GRead)

Report by: Marcos Viera
Participants: Doaitse Swierstra, Eelco Lempsink
Status: actively developed

The GRead library provides an alternative to the stan-
dard read function. Instead of composing parsers, we
dynamically compose grammars describing datatypes,
removing any left-recursion and combining common
prefixes of alternatives. From the composed grammar,
we generate a final parser using a function gread that
has a few improvements over read.

Introduction

The Haskell definition and implementation of read is
far from perfect. First, read is not able to handle
the infix operator associativity. This also puts con-
straints on the way show is defined and forces it to
generate more parentheses than necessary. Second,
it may give rise to exponential parsing times. These
problems are due to the compositionality requirement

37

http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
mailto: nfrisby at ittc.ku.edu
mailto: andygill at ku.edu
http://www.haskell.org/haskell-symposium/2008/
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://hackage.haskell.org/
http://hackage.haskell.org/
http://www.cs.uu.nl/wiki/Center/TTTAS
http://www.cs.uu.nl/wiki/Center/TTTAS

for read functions, which imposes a top-down parsing
strategy. GRead provides a different approach, based
on typed abstract syntax, in which grammars describ-
ing the datatypes are composed dynamically.
We define a function gread with the following fea-

tures:

◦ Handle the associativity of infix operators. The cor-
responding gshow generates fewer parentheses than
the standard show.

◦ Read data in linear time. The standard read has an
exponential behavior in some cases of datatypes with
infix operators.

◦ Is able to repair possible errors in the input.

The instances of the class Gram (that make grammar
first-class values) can be automatically derived using
the function deriveGrammar.

Background

The approach taken in GRead was proposed by Marcos
Viera, Doaitse Swierstra, and Eelco Lempsink in the
Haskell 2008 paper “Haskell, Do You Read Me? Con-
structing and Composing Efficient Top-down Parsers at
Runtime.” It uses the Typed Transformations of Typed
Abstract Syntax library (→ 5.5.8) developed by Arthur
Baars and Doaitse Swierstra.

Future plans

A first version of GRead will soon be released on Hack-
age.

Further reading

See the TTTAS home page.

5.5.10 Utrecht Parser Combinator Library

Report by: Doaitse Swierstra
Status: actively developed

The Utrecht Parser Combinator library has remained
largely unmodified for the last five years, and has served
us well. Over the years, however, new insights have
grown, and with the advent of GADTs some internals
could be simplified considerably. The Lernet summer
school in February 2008 (http://www.fing.edu.uy/inco/
eventos/lernet2008/) provided an incentive to start a
rewrite of the library; a newly written tutorial will ap-
pear in the lecture notes.

Features

◦ Much simpler internals than the old library.

◦ Online result production, error recovery, combina-
tors for parsing ambiguous grammars, an applicative

interface, a monadic interface.

◦ Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

◦ Fixes a potential black hole which went unnoticed for
years in the code for the monadic bind as presented
by Swierstra and Hughes in the ICFP 2003 paper:
Polish Parsers: Step by Step.

◦ Surprisingly, and counter-intuitively, it has turned
out that the abstract interpretation as described by
Swierstra and Duponcheel in the lecture notes of the
school on Advanced Functional programming in 1996
can be combined with monadic operations. However,
this part has not been fully implemented yet in the
new library.

Although the library has not been released yet, it has
been used successfully in a couple of Utrecht-internal
projects.

Future plans

The final library, with the abstract interpretation part
in order to get the parsing speed we got used to, will
be release on Hackage again. We plan to extend the
short tutorial which will appear in the LNCS series (45
pages) into a long tutorial.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact 〈doaitse@swierstra.net〉.

5.6 Mathematical Objects

5.6.1 dimensional

Report by: Björn Buckwalter
Status: active, mostly stable

Dimensional is a library providing data types for per-
forming arithmetics with physical quantities and units.
Information about the physical dimensions of the quan-
tities/units is embedded in their types, and the validity
of operations is verified by the type checker at compile
time. The boxing and unboxing of numerical values as
quantities is done by multiplication and division with
units. The library is designed to, as far as is practical,
enforce/encourage best practices of unit usage.
The core of dimensional is stable with additional

units being added on an as-needed basis. In addition
to the si system of units, dimensional has experimen-
tal support for user-defined dimensions and a proof-of-
concept implementation of the cgs system of units. I

38

http://www.haskell.org/haskell-symposium/2008/
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://hackage.haskell.org/
http://hackage.haskell.org/
http://www.cs.uu.nl/wiki/Center/TTTAS
http://www.fing.edu.uy/inco/eventos/lernet2008/
http://www.fing.edu.uy/inco/eventos/lernet2008/
mailto: doaitse at swierstra.net

am also experimenting with forward automatic differ-
entiation and rudimentary linear algebra.
The current release is compatible with ghc 6.6.x and

above and can be downloaded from Hackage or the
project web site. The primary documentation is the
literate Haskell source code, but the wiki on the project
web site has a few usage examples to help with getting
started.
The Darcs repo has moved to http://code.haskell.org/

dimensional.

Further reading

http://dimensional.googlecode.com

5.6.2 Halculon: units and physical constants
database

Report by: Jared Updike
Status: web application in beta, database stable

A number of Haskell libraries can represent numeri-
cal values with physical dimensions that are checked
at runtime or compile time (including dimensional and
the Numeric Prelude), but neither provide an exhaus-
tive, searchable, annotated database of units, measures,
and physical constants. Halculon is an interactive unit
database of 4,250 units, with a sample Haskell AJAX
web application, based on the units database created by
Alan Eliasen for the wonderful physical units program-
ming language Frink. (Because each unit in Frink’s
unit.txt database is defined in terms of more basic
unit definitions — an elegant approach in general —
units.txt is inconvenient for looking up a single random
unit; the entire file might need to be parsed to repre-
sent any given constant solely in terms of the base SI
units, which is precisely what the Halculon database
provides.)
Halculon also provides a carefully tuned, user- and

developer-friendly search string database that aims to
make interactive use pleasant. The database tables are
available online and downloadable as UTF-8 text.
Future plans for the sample calculator web applica-

tion include utilizing MPFR’s arbitrary precision floats
to bring greater range to Real calculations, in line with
those for Integers and Rationals (built in to Haskell).

Further reading

◦ http://www.updike.org/articles/Units
◦ http://www.updike.org/halculon/

5.6.3 Numeric prelude

Report by: Henning Thielemann
Participants: Dylan Thurston, Mikael Johansson
Status: experimental, active development

The hierarchy of numerical type classes is revised and
oriented at algebraic structures. Axiomatics for funda-
mental operations are given as QuickCheck properties,
superfluous super-classes like Show are removed, se-
mantic and representation-specific operations are sepa-
rated, the hierarchy of type classes is more fine grained,
and identifiers are adapted to mathematical terms.
There are both certain new type classes represent-

ing algebraic structures and new types of mathematical
objects. Currently supported algebraic structures are
group (additive), ring, principal ideal domain, field, al-
gebraic closures, transcendental closures, module and
vector space, normed space, lattice, differential algebra,
monoid.
There is also a collection of mathematical object

types, which is useful both for applications and testing
the class hierarchy. The types are lazy Peano number,
arbitrarily quantified non-negative lazy number (gener-
alization of Peano number), complex number, quater-
nion, residue class, fraction, partial fraction, number
equipped with physical units in two variants (dynam-
ically and statically checked) fixed point number with
respect to arbitrary bases and numbers of fraction dig-
its, infinite precision number in an arbitrary positional
system as lazy lists of digits supporting also numbers
with terminating representations, polynomial, power
series, Laurent series root set of a polynomial, ma-
trix (basics only), algebra, e.g., multi-variate polyno-
mial (basics only), permutation group.
Due to Haskell’s flexible type system, you can com-

bine all these types, e.g., fractions of polynomials,
residue classes of polynomials, complex numbers with
physical units, power series with real numbers as coef-
ficients.
Using the revised system requires hiding some of the

standard functions provided by Prelude, which is fortu-
nately supported by GHC. The library has basic Cabal
support and a growing test-suite of QuickCheck tests
for the implemented mathematical objects.
Each data type now resides in a separate module.

Cyclic dependencies could be eliminated by fixing some
types in class methods. E.g., power exponents became
simply Integer instead of Integral, which has also the
advantage of reduced type defaulting.

Further reading

http://www.haskell.org/haskellwiki/Numeric_Prelude

5.6.4 vector-space

Report by: Conal Elliott
Status: active development

vector-space is library that provides provides classes
and generic operations for additive groups, vector
spaces and affine spaces. There are also vector space
bases and a general notion of linear maps. The li-
brary also defines a type of infinite towers of gener-

39

http://code.haskell.org/dimensional
http://code.haskell.org/dimensional
http://dimensional.googlecode.com
http://www.updike.org/articles/Units
http://www.updike.org/halculon/
http://www.haskell.org/haskellwiki/Numeric_Prelude

alized derivatives. A generalized derivative is a linear
map rather than one of the usual concrete representa-
tions (scalars, vectors, matrices, . . .).
For the past few months, this work has been gra-

ciously supported by Anygma.

Further reading

http://haskell.org/haskellwiki/vector-space

5.6.5 Nat

Report by: Jan Christiansen
Status: experimental

Nat is a small library that provides an implementation
of natural numbers. It was motivated by a similar im-
plementation in the functional logic programming lan-
guage Curry (→ 3.2.1). In contrast to most other im-
plementations it uses a binary representation instead of
Peano numbers. Therefore, the performance of arith-
metic operations is substantially better. Furthermore,
the operations are implemented in a least strict way.
That is, they do only evaluate their arguments as far
as necessary. It turned out that the implementation of
least strict functions is not at all as trivial as one would
expect. This implementation emerged from motivating
examples for a tool to check whether a function is least
strict, called StrictCheck. The implementation is avail-
able via hackage at http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/nat.

Further reading

http://www-ps.informatik.uni-kiel.de/currywiki/fun/
naturals

5.6.6 AERN-Real and friends

Report by: Michal Konečný
Participants: Amin Farjudian, Jan Duracz
Status: experimental, actively developed

AERN stands for Approximating Exact Real Numbers.
We are developing a family of the following libraries for
fast exact real number arithmetic:

◦ AERN-Real: arbitrary precision interval arithmetic
with multiple backends (pure Haskell floating point
numbers, MPFR, correctly rounded doubles)

◦ AERN-RnToRm: arbitrary precision arithmetic of
piece-wise polynomial function enclosures (PFEs) for
functions over n-dimensional real intervals

◦ AERN-RnToRm-Plot: GTK window for inspecting
the graphs of PFEs in one variable (see figure below,
showing a screenshot of an AERN-RnToRm-Plot
window exploring an enclosure of cos(10x) (blue) and
an enclosure of its primitive function (red))

◦ AERN-Net: an implementation of distributed query-
based (i.e., lazy) computation over analytical and ge-
ometrical objects

The development is driven mainly by the needs of our
two research projects. We use the libraries extensively
to:

◦ prototype algorithms for reliable and ultimately con-
verging methods for solving differential equations in
many variables (AERN-RnToRm, AERN-Net)

◦ solve numerical constraint satisfaction problems, es-
pecially those arising from verification of programs
that use floating point numbers (AERN-RnToRm)

For our purposes AERN-Real has been stable for al-
most a year. It needs to be tested for a wider variety
of applications before we can label it as stable. The
other libraries are very likely to contain errors and we
discover some every now and then. Also their API is
occasionally changing. All the libraries provide a fairly
extensive set of features and are reasonably well docu-
mented.
The libraries are under active development and new

features and bug fixes are expected to be submitted to
Hackage for at least the whole of 2008/2009. Notable
planned additions in this period include:

◦ lazy communication of approximations of higher-
order real functions using role switching

◦ infinite trees of enclosures for interval partial deriva-
tives computed using automatic differentiation

◦ zooming, panning and better coordinate display in
the GTK graph display

Further reading

See Haddock documentation via Hackage — has links
to research papers.

40

http://haskell.org/haskellwiki/vector-space
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/nat
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/nat
http://www-ps.informatik.uni-kiel.de/currywiki/fun/naturals
http://www-ps.informatik.uni-kiel.de/currywiki/fun/naturals

5.6.7 Haskell BLAS Bindings

Report by: Patrick O. Perry
Status: version 0.6

The blas library is a set of high-level bindings to
the Basic Linear Algebra Subprograms (BLAS). The
project is part of a larger effort to make high perfor-
mance scientific computing in Haskell possible.
The design goal is to make using BLAS as natural as

possible without sacrificing functionality. In particular,
the library has both pure and impure data types, the
latter supporting destructive updates in the ST and IO
monads.
The library has just undergone a massive rewrite to

clean up the interface and support ST operations. At
this point most of the core functionality is in place, but
there may be some aesthetic changes in the future. The
latest version is available on Hackage.
If anyone would like to contribute to the project,

there is still plenty of work to do, and help is always
appreciated. Work on bindings for the rest of LAPACK
is about to begin.

Further reading

http://quantile95.com

5.7 Data types and data structures

5.7.1 Data.ByteString

Report by: Don Stewart
Status: active development

Data.ByteString provides packed strings (byte arrays
held by a ForeignPtr), along with a list interface to
these strings. It lets you do extremely fast IO in
Haskell; in some cases, even faster than typical C im-
plementations, and much faster than [Char]. It uses
a flexible “foreign pointer” representation, allowing the
transparent use of Haskell or C code to manipulate the
strings.
Data.ByteString is written in Haskell98 plus the for-

eign function interface and cpp. It has been tested
successfully with GHC 6.4, 6.6, 6.8, Hugs 2005–2006,
and the head version of nhc98.
Bytestring 0.9.1.0 has been released, with full cover-

age data, an improved testsuite, and some key perfor-
mance improvements.

Further reading

◦ Source and documentation can be found at http://
www.cse.unsw.edu.au/~dons/fps.html

◦ The source repository is available:
darcs get http://darcs.haskell.org/bytestring

5.7.2 bytestring-mmap

Report by: Don Stewart
Status: active development

This library provides a wrapper to mmap(2), allowing
files or devices to be lazily loaded into memory as strict
or lazy ByteStrings (→ 5.7.1), using the virtual memory
subsystem to do on-demand loading.

Further reading

◦ Source and documentation can be found on Hackage.
◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/
bytestring-mmap/

5.7.3 dlist

Report by: Don Stewart
Status: active development

Differences lists: a list-like type supporting O(1) ap-
pend. This is particularly useful for efficient logging
and pretty printing, (e.g., with the Writer monad),
where list append quickly becomes too expensive.

Further reading

◦ Source and documentation can be found on Hackage.
◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/dlist/

5.7.4 HList — a library for typed heterogeneous
collections

Report by: Oleg Kiselyov
Participants: Ralf Lämmel, Keean Schupke, Gwern

Branwen

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants (→ 1.5.6).
HList is analogous to the standard list library, pro-
viding a host of various construction, look-up, filter-
ing, and iteration primitives. In contrast to the reg-
ular lists, elements of heterogeneous lists do not have
to have the same type. HList lets the user formulate
statically checkable constraints: for example, no two
elements of a collection may have the same type (so
the elements can be unambiguously indexed by their
type).
An immediate application of HLists is the imple-

mentation of open, extensible records with first-class,
reusable, and compile-time only labels. The dual
application is extensible polymorphic variants (open
unions). HList contains several implementations of
open records, including records as sequences of field
values, where the type of each field is annotated with
its phantom label. We, and now others (Alexandra
Silva, Joost Visser: PURe.CoddFish project), have also

41

http://quantile95.com
http://www.cse.unsw.edu.au/~dons/fps.html
http://www.cse.unsw.edu.au/~dons/fps.html
http://darcs.haskell.org/bytestring
http://code.haskell.org/~dons/code/bytestring-mmap/
http://code.haskell.org/~dons/code/bytestring-mmap/
http://code.haskell.org/~dons/code/dlist/

used HList for type-safe database access in Haskell.
HList-based Records form the basis of OOHaskell (http:
//darcs.haskell.org/OOHaskell). The HList library relies
on common extensions of Haskell 98.
The HList repository is available via Darcs: http:

//darcs.haskell.org/HList
The main change since last year was the addition of a

large set of patches by Gwern Branwen 〈gwern0@gmail.
com〉, to arrange the library within the Data.HList
hierarchy, to update the code for GHC 6.8.2 (using
the LANGUAGE pragma, eliminating causes of GHC
warnings), to build the library with the latest version of
Cabal. He also uploaded the library to Hackage. Many
thanks to Gwern Branwen.

Further reading

◦ HList: http://homepages.cwi.nl/~ralf/HList/
◦ OOHaskell:
http://homepages.cwi.nl/~ralf/OOHaskell/

5.7.5 stream-fusion

Report by: Don Stewart
Status: active development

Data.List.Stream provides the standard Haskell list
data type and api, with an improved fusion sys-
tem, as described in the papers “Stream Fusion” and
“Rewriting Haskell Strings”. Code written to use
the Data.List.Stream library should run faster (or at
worst, as fast) as existing list code. A precise, cor-
rect reimplementation is a major goal of this project,
and Data.List.Stream comes bundled with around 1000
QuickCheck properties, testing against the Haskell98
specification, and the standard library.
The latest version of the stream-fusion package is

now available from Hackage.

Further reading

Source and documentation can be found at: http://
www.cse.unsw.edu.au/~dons/streams.html

5.7.6 Edison

Report by: Robert Dockins
Status: stable, maintained

Edison is a library of purely function data structures
for Haskell originally written by Chris Okasaki. Con-
ceptually, it consists of two things:

1. A set of type classes defining data the following
data structure abstractions: “sequences”, “collec-
tions” and “associative collections”

2. Multiple concrete implementations of each of the ab-
stractions.

The following major changes have been made since
version 1.1, which was released in 1999.

◦ Typeclasses updated to use fundeps (by Andrew Bro-
mage)

◦ Implementation of ternary search tries (by Andrew
Bromage)

◦ Modules renamed to use the hierarchical module ex-
tension

◦ Documentation haddockized

◦ Source moved to a darcs repository

◦ Build system cabalized

◦ Unit tests integrated into a single driver program
which exercises all the concrete implementations
shipped with Edison

◦ Multiple additions to the APIs (mostly the associ-
ated collection API)

Edison is currently in maintain-only mode. I do not
have the time required to enhance Edison in the ways I
would like. If you are interested in working on Edison,
do not hesitate to contact me.
The biggest thing that Edison needs is a benchmark-

ing suite. Although Edison currently has an extensive
unit test suite for testing correctness, and many of the
data structures have proven time bounds, I have no way
to evaluate or compare the quantitative performance
of data structure implementations in a principled way.
Unfortunately, benchmarking data structures in a non-
strict language is difficult to do well. If you have an
interest or experience in this area, your help would be
very much appreciated.

Further reading

http://www.cs.princeton.edu/~rdockins/edison/home/

5.7.7 MemoTrie

Report by: Conal Elliott
Status: active development

MemoTrie is functional library for creating efficient
memo functions, using tries. It is based on some code
from Spencer Janssen and uses type families.

Further reading

http://haskell.org/haskellwiki/MemoTrie

5.8 Data processing

5.8.1 The Haskell Cryptographic Library

Report by: Dominic Steinitz

The latest version is still 4.1.0. Contributions (in the
form of, e.g., improvements to documentation) con-
tinue to be received.

42

http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/HList
http://darcs.haskell.org/HList
mailto: gwern0 at gmail.com
mailto: gwern0 at gmail.com
http://homepages.cwi.nl/~ralf/HList/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://www.cse.unsw.edu.au/~dons/streams.html
http://www.cse.unsw.edu.au/~dons/streams.html
http://www.cs.princeton.edu/~rdockins/edison/home/
http://haskell.org/haskellwiki/MemoTrie

The interface to SHA-1 is still different from MD5,
and the whole library still needs a rethink. Unfortu-
nately, I still do not have the time to undertake much
work on it at the moment and it is not clear when
I will have more time. I am still therefore looking for
someone to help keeping the repository up-to-date with
contributions, re-structuring the library, and managing
releases.
This release contains:

◦ DES

◦ Blowfish

◦ AES

◦ TEA

◦ BubbleBabble

◦ Cipher Block Chaining (CBC)

◦ PKCS#5 and nulls padding

◦ SHA-1, SHA-2, SHA-224, SHA-256, SHA-384, SHA-
512

◦ HMAC

◦ MD5

◦ RSA

◦ OAEP-based encryption (Bellare-Rogaway)

◦ Hex utilities

◦ Support for Word128, Word192 and Word256, and
beyond

Further reading

◦ http://www.haskell.org/crypto
◦ http://hackage.haskell.org/trac/crypto.

5.8.2 The Haskell ASN.1 Library

Report by: Dominic Steinitz

The current release is 0.0.18, which contains functions
to handle ASN.1, X.509, PKCS#8, and PKCS#1.5.
This still has a dependency on NewBinary but

we now have a way of removing this by using
ByteStrings (→ 5.7.1). The functions for handling 2s
complement and non-negative binary integer encodings
now use the new method. Unfortunately, Adam Lan-
gley has announced he is no longer able to support
binary-strict which has been used to replace NewBi-
nary. I have offered to take on its support but I have
not yet got around to updating the hackage entry.
The current version handles the Basic Encoding

Rules (BER). In addition, even more work (over 500

Darcs patches) has been undertaken on handling the
Packed Encoding Rules (PER) using a GADT to rep-
resent the Abstract Syntax Tree (we will probably move
the BER to use the same AST at some point). Inter-
estingly, this has resulted in us finding a small bug in
the ASN.1 specification which we have reported to the
ITU.
I do not suggest downloading the current working

version yet (unless you want to contribute). We are in
the process of moving all the original tests across to
work with the new version of the AST.
The plan is to write a formal and executable specifi-

cation of ASN.1 PER as a technical report. Thereafter,
we plan to release the documentation in haddock form.
This release supports:

◦ X.509 identity certificates

◦ X.509 attribute certificates

◦ PKCS#8 private keys

◦ PKCS#1 version 1.5

Further reading

http://haskell.org/asn1.

5.8.3 MultiSetRewrite

Report by: Martin Sulzmann

MultiSetRewrite is a Haskell library extension to sup-
port multi-set rewrite rules with guards. Rewrite
rules are executed concurrently as long as they op-
erate on non-overlapping left-hand sides. We make
use of highly-concurrent, non-blocking data structures
based on CAS lists. Thus, we can parallelize con-
current rule executions on a multi-core architecture.
See for details http://sulzmann.blogspot.com/2008/10/
multi-set-rewrite-rules-with-guards-and.html

Latest developments

The MultiSetRewrite implementation (as a li-
brary extension to Haskell) is available via
http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/multisetrewrite
The package includes two example applications:

◦ A concurrent stack using Join-style concurrency im-
plemented on top of MultiSetRewrite.

◦ A Constraint Handling Rules (CHR) solver.

5.8.4 Graphalyze

Report by: Ivan Lazar Miljenovic
Status: Version 0.3

The Graphalyze library is a general-purpose, fully ex-
tensible graph-theoretic analysis library, which includes

43

http://www.haskell.org/crypto
http://hackage.haskell.org/trac/crypto
http://haskell.org/asn1
http://sulzmann.blogspot.com/2008/10/multi-set-rewrite-rules-with-guards-and.html
http://sulzmann.blogspot.com/2008/10/multi-set-rewrite-rules-with-guards-and.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/multisetrewrite
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/multisetrewrite

functions to assist with graph creation and visualiza-
tion, as well as many graph-related algorithms. Also
included is a small abstract document representation,
with a sample document generator utilizing Pandoc (→
6.4.1). Users of this library are able to mix and match
Graphalyze’s algorithms with their own.
Graphalyze is used in SourceGraph (→ 4.3.9).

Further reading

◦ http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/Graphalyze

◦ http://code.haskell.org/Graphalyze

5.9 Generic Programming

5.9.1 uniplate

Report by: Neil Mitchell

Uniplate is a boilerplate removal library, with similar
goals to the original Scrap Your Boilerplate work. It re-
quires fewer language extensions, and allows more suc-
cinct traversals with higher performance than SYB (→
5.9.2). A paper including many examples was pre-
sented at the Haskell Workshop 2007. Since the original
version, the library has been further optimized and is
now about 15% faster.
If you are writing a compiler, or any program that

operates over values with many constructors and nested
types, you should be using a boilerplate removal library.
This library provides a gentle introduction to the field,
and can be used practically to achieve substantial sav-
ings in code size and maintainability.

Further reading

http://www-users.cs.york.ac.uk/~ndm/uniplate

5.9.2 Scrap Your Boilerplate (SYB)

Report by: José Pedro Magalhães
Participants: Sean Leather
Status: actively developed

Scrap Your Boilerplate (SYB) is a library for generic
programming in Haskell. It has been supported by
GHC since the 6.0 release. The library is based on
combinators and a few primitives for type-safe casting
and processing constructor applications.
It was originally developed by Ralf Lämmel and Si-

mon Peyton Jones. Since then, many people have con-
tributed with research relating to SYB or its applica-
tions.

Recent changes

In the discussion towards the release of the 6.10 version
of GHC, it was decided that SYB would be separated
from the compiler itself. This allows for easier main-
tainability, since updating the library does not have
to depend on updating the compiler. This splitting
amounts to moving the Data.Generics modules from
the base package into a new package called syb.
One issue with splitting the Data.Generics modules

is that the Data class is tightly coupled to GHC’s au-
tomatic generation of instances. Completely moving
the entire SYB library from the base package would
give a false sense of separation, since the methods
of Data cannot be changed without also modifying
the compiler. As a result, Data was moved from the
Data.Generics.Basics module to Data.Data. Dis-
cussion on how to split SYB resulted in this and other
changes to the code. These changes not only allow the
library to be developed independently from GHC but
also reduce dependencies on SYB in cases where it is
not necessary.

Future plans

The next step is to create a separate repository for the
new syb package and develop it independently, releas-
ing it on Hackage. There are several ideas for future
improvements for SYB, namely increasing performance
and providing more generic functions (such as generic
map).

Contact

To report bugs or suggest improvements, please use
the issue tracker for SYB. For general concerns and
questions, please use the Generics mailing list.

Further reading

More information can be found on the new SYB home
page. For API documentation, refer to the Haddock
documentation. The original webpage also contains in-
formation and many examples.

5.9.3 Extensible and Modular Generics for the
Masses (EMGM)

Report by: Sean Leather
Participants: José Pedro Magalhães, Alexey Rodriguez,

Andres Löh
Status: actively developed

Extensible and Modular Generics for the Masses
(EMGM) is a general-purpose library for generic pro-
gramming with type classes.

44

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Graphalyze
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Graphalyze
http://code.haskell.org/Graphalyze
http://www-users.cs.york.ac.uk/~ndm/uniplate
http://homepages.cwi.nl/~ralf/syb1/
http://thread.gmane.org/gmane.comp.lang.haskell.libraries/9962
http://thread.gmane.org/gmane.comp.lang.haskell.libraries/9962
http://www.cs.uu.nl/wiki/GenericProgramming/SYB#Handling_the_6_10_split
http://www.cs.uu.nl/wiki/GenericProgramming/SYB#Handling_the_6_10_split
http://hackage.haskell.org/
http://code.google.com/p/scrapyourboilerplate/issues/list
http://www.haskell.org/mailman/listinfo/generics
http://www.cs.uu.nl/wiki/GenericProgramming/SYB
http://www.cs.uu.nl/wiki/GenericProgramming/SYB
http://www.haskell.org/ghc/dist/stable/docs/libraries/syb/Data-Generics.html
http://www.haskell.org/ghc/dist/stable/docs/libraries/syb/Data-Generics.html
http://www.cs.vu.nl/boilerplate/

Introduction

EMGM embodies the concepts of datatype-generic pro-
gramming in a library. Haskell datatypes are repre-
sented at the value level using a sum-of-products view.
Generic functions are written by induction on the struc-
ture of the representation. The library also allows
generic functions to be extended using ad-hoc cases for
arbitrary datatypes. Adding support for new datatypes
is straightforward.
Other features of the library include a sizable col-

lection of ready-to-use generic functions and built-in
support for standard datatypes. Some examples of the
functions are:

◦ Crush, a useful generalization of fold-like opera-
tions that supports flattening, integer operations,
and logic operations on all values of an arbitrary
datatype

◦ Extensible Read and Show functions to which one
might add special cases for certain types

◦ Collect for collecting values of a certain type con-
tained within a value of a different type

◦ ZipWith, a generic version of the standard zipWith

EMGM also comes with support for standard datatypes
such as lists, Either, Maybe, and tuples.

Background

The ideas for EMGM come from research by Ralf
Hinze, Bruno Oliveira, and Andres Löh. It was fur-
ther explored in a comparison of generic programming
libraries by Alexey Rodriguez, et al. Our particular
implementation was developed simultaneously with the
writing of lecture notes for the 2008 Advanced Func-
tional Programming Summer School.

Future plans

In the near future (possibly by the time you read this),
we will release a new version of EMGMwith support for
generating the representation of a datatype using Tem-
plate Haskell. Currently, this must be done manually.
We also have many ideas about new generic functions
and possible applications.

Contact

We are definitely interested in knowing if you use
EMGM, how you use it, and where it can be improved.
We may be contacted on the Generics mailing list.

Further reading

More information can be found on the EMGM home
page. References for the research that resulted in
EMGM can be found on the Hackage page for EMGM.

5.9.4 multirec: Generic programming with systems
of recursive datatypes

Report by: Alexey Rodriguez
Participants: Stefan Holdermans, Andres Löh, Johan

Jeuring
Status: actively developed

Many generic programs require information about the
recursive positions of a datatype. Examples include
the generic fold, generic rewriting, or the Zipper data
structure. Several generic programming systems allow
to write such functions by viewing datatypes as fixed
points of a pattern functor. Traditionally, this view has
been limited to so-called regular datatypes such as lists
and binary trees. In particular, systems of mutually
recursive datatypes have been excluded.
With the multirec library, we provide a mechanism

to talk about fixed points of systems of datatypes that
may be mutually recursive. On top of this representa-
tions, generic functions such as the fold or the Zipper
can then be defined.
We expect that the library will be especially inter-

esting for compiler writers, because ASTs are typically
systems of mutually recursive datatypes, and with mul-
tirec it becomes easy to write generic functions on
ASTs.

Features and limitations

◦ Generalizes the fixed point view from single, regular
datatypes to systems of recursive datatypes.

◦ Includes detailed examples: generic fold and generic
compos (in the style of Bringert and Ranta, see be-
low). The Zipper and generic rewriting for systems of
datatypes will be released soon as separate libraries
that build on multirec.

◦ The generic compos functions do not require the user
to modify their existing systems of datatypes.

◦ In its current form, this library does not support
nested datatypes.

Future plans

At the moment the user is required to enable rewrit-
ing on a datatype by supplying a type-specific instance
declaration. In the future, we are planning to automate
this process using Template Haskell.

Contact

Please do get in touch with us using the Generics
mailing list (http://www.haskell.org/mailman/listinfo/
generics) if you find the library useful or if you want
to report bugs and make suggestions.

45

http://www.haskell.org/mailman/listinfo/generics
http://www.cs.uu.nl/wiki/GenericProgramming/EMGM
http://www.cs.uu.nl/wiki/GenericProgramming/EMGM
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/emgm
http://www.haskell.org/mailman/listinfo/generics
http://www.haskell.org/mailman/listinfo/generics

Further reading

◦ The library is available on Hackage as multirec.
More information will be made available on
the multirec home page (http://www.cs.uu.nl/wiki/
GenericProgramming/Multirec).

◦ Paper about the ideas underlying the library:
http://www.cs.uu.nl/~andres/Rec

◦ Paper about compos by Bringert and Ranta:
http://www.cs.chalmers.se/~bringert/publ/
composOp/composOp.pdf

5.9.5 Generic rewriting library for regular datatypes

Report by: Alexey Rodriguez
Participants: Thomas van Noort, Stefan Holdermans,

Johan Jeuring, Bastiaan Heeren
Status: actively developed

This library provides a set of functions to apply rewrite
rules to a datatype. The rewrite functions are generic,
so it is not necessary to re-implement the matching
and substitution machinery for every datatype. Addi-
tionally, the library provides a set of generic traversal
functions that can be used together with rewriting.

Features and limitations

◦ Generic rewriting machinery

◦ Generic traversals (top-down, bottom-up, etc.)

◦ Rewrite rules are just datatypes and therefore ob-
servable. This means that you can, for example, in-
vert rewrite rules.

◦ Rewrite rules are defined in the original domain. So
the user does not have to worry about internal im-
plementation details. For instance, the generic ex-
tension of datatypes with metavariables remains in-
ternal to the library.

◦ This library can be used with regular datatypes, that
is, datatypes that exhibit simple recursion such as
lists and binary trees (nested datatypes and mutual
recursion are not supported)

Future plans

At the moment the user is required to enable rewrit-
ing on a datatype by supplying a type-specific instance
declaration. In the future, we are planning to automate
this process using Template Haskell.
For a version of the library that supports mutual

recursion, please have a look at multirec (→ 5.9.4).

Contact

Please do get in touch with us using the Generics mail-
ing list if you find the library useful or if you want to
report bugs and make suggestions.

Further reading

More information can be found on the Rewriting home
page. References for the research that resulted in the
rewriting library can be found on the Hackage page for
rewriting.

5.9.6 2LT: Two-Level Transformation

Report by: Tiago Miguel Laureano Alves
Participants: Joost Visser, Pablo Berdaguer, Alcino

Cunha, José Nuno Oliveira, Hugo Pacheco
Status: active

A two-level data transformation consists of a type-level
transformation of a data format coupled with value-
level transformations of data instances corresponding
to that format. Examples of two-level data transfor-
mations include XML schema evolution coupled with
document migration, and data mappings used for in-
teroperability and persistence.
In the 2LT project, support for two-level transforma-

tions is being developed using Haskell, relying in par-
ticular on generalized abstract data types (GADTs).
Currently, the 2LT package offers:

◦ A library of two-level transformation combinators.
These combinators are used to compose transforma-
tion systems which, when applied to an input type,
produce an output type together with the conver-
sion functions that mediate between input and out-
put types.

◦ Front-ends for VDM-SL, XML, and SQL. These
front-ends support (i) reading a schema, (ii) apply-
ing a two-level transformation system to produce a
new schema, (iii) converting a document/database
corresponding to the input schema to a docu-
ment/database corresponding to the output schema,
and vice versa.

◦ A combinator library for transformation of point-
free and structure-shy functions. These combinators
are used to compose transformation systems for op-
timization of conversion functions, and for migration
of queries through two-level transformations. Inde-
pendently of two-level transformation, the combina-
tors can be used to specialize structure-shy programs
(such as XPath queries and strategic functions) to
structure-sensitive point-free form, and vice versa.

◦ Support for schema constraints using point-free ex-
pressions. Constraints present in the initial schema
are preserved during the transformation process and
new constraints are added in specific transformations
to ensure semantic preservation. Constraints can be
simplified using the already existent library for trans-
formation of point-free functions.

The various sets of transformation combinators are
reminiscent of the combinators of Strafunski and the

46

http://www.cs.uu.nl/wiki/GenericProgramming/Multirec
http://www.cs.uu.nl/wiki/GenericProgramming/Multirec
http://www.cs.uu.nl/~andres/Rec
http://www.cs.chalmers.se/~bringert/publ/composOp/composOp.pdf
http://www.cs.chalmers.se/~bringert/publ/composOp/composOp.pdf
http://www.haskell.org/mailman/listinfo/generics
http://www.haskell.org/mailman/listinfo/generics
http://www.cs.uu.nl/wiki/GenericProgramming/Rewriting
http://www.cs.uu.nl/wiki/GenericProgramming/Rewriting
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/rewriting
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/rewriting

Scrap-your-Boilerplate (→ 5.9.2) approach to generic
functional programming.
A release of 2LT is available from the project URL.

Future plans

New functionality is planned, such as elaboration of the
front-ends and the creation of a web interface. Further-
more, efforts are underway to reimplement the existent
functionality using lenses under the context of the PhD
student Hugo Pacheco.

Further reading

◦ Project URL: http://2lt.googlecode.com
◦ Alcino Cunha, José Nuno Oliveira, Joost Visser.
Type-safe Two-level Data Transformation. Formal
Methods 2006.

◦ Alcino Cunha, Joost Visser. Strongly Typed Rewrit-
ing For Coupled Software Transformation. RULE
2006.

◦ Pablo Berdaguer, Alcino Cunha, Hugo Pacheco,
Joost Visser. Coupled Schema Transformation and
Data Conversion For XML and SQL. PADL 2007.

◦ Alcino Cunha and Joost Visser. Transformation of
Structure-Shy Programs, Applied to XPath Queries
and Strategic Functions. PEPM 2007.

◦ Tiago L. Alves, Paulo Silva and Joost Visser.
Constraint-aware Schema Transformation. RULE,
2008.

5.10 Types for Safety and Reasoning

5.10.1 Takusen

Report by: Alistair Bayley
Participants: Oleg Kiselyov
Status: active development

Takusen is a library for accessing DBMS’s. Like
HSQL, we support arbitrary SQL statements (currently
strings, extensible to anything that can be converted to
a string).
Takusen’s “unique selling-point” is safety and effi-

ciency. We statically ensure that all acquired database
resources such as cursors, connection, and statement
handles are released, exactly once, at predictable times.
Takusen can avoid loading the whole result set in mem-
ory and so can handle queries returning millions of
rows, in constant space. Takusen also supports au-
tomatic marshaling and unmarshaling of results and
query parameters. These benefits come from the design
of query result processing around a left-fold enumera-
tor.
Currently we fully support Oracle, Sqlite, and Post-

greSQL. ODBC support is nearly complete; string out-
put bind-variables do not marshal correctly.

Things have been quiet. Since the last report we
have:

◦ added support for ODBC output bind variables (but
this is not yet fully functional)

◦ improved support for Oracle output bind variables

◦ made many small fixes to the installation process

Future plans

◦ complete ODBC interface.

◦ Large object support.

◦ MS SQL Server and Sybase interfaces, via FreeTDS.

Further reading

◦ Hackage: http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/Takusen

◦ darcs get http://darcs.haskell.org/takusen/
◦ browse docs: http://darcs.haskell.org/takusen/doc/

html (see Database.Enumerator for Usage instruc-
tions and examples)

5.10.2 Session Types for Haskell

Report by: Matthew Sackman
Status: beta; active development

Session Types provide a way to express communication
protocols. They specify, for a bi-directional channel,
who says what, in what order, and to whom. Looping
and branching structures are supported. Thus a session
type adds a type to a communication channel, ensuring
that use of the channel is safe (i.e., when one party
speaks, the others listen, and that the type of the value
sent is the type of the value expected to be received).
Thus, Session Types offer temporal information which
is absent from all other concurrency techniques.
The focus of the library is on the communication

between threads. However, work is progressing on sup-
porting fully distributed operation. The library sup-
ports forking new processes with channels; creating
new channels between existing processes; the commu-
nication of process IDs; the communication of chan-
nels (higher-order channels or delegation); subtyping
of Pids; and some initial work on real distributed op-
eration over Handles.
Current development is rapid and is focusing on

building up a strong suite of examples and networked
operation. Recent features have added support for
higher-order channels and a new DSL for specifying
Session Types (which supports lexical scoping and is
composable).
If you are doing any multi-threaded development in

Haskell and find the properties and simplicity of mes-
sage passing concurrency attractive, then I strongly en-
courage you to take a look at Session Types.

47

http://2lt.googlecode.com
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Takusen
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Takusen
http://darcs.haskell.org/takusen/
http://darcs.haskell.org/takusen/doc/html
http://darcs.haskell.org/takusen/doc/html

Further reading

◦ Project homepage: http://wellquite.org/sessions/
◦ Tutorial:
http://wellquite.org/sessions/tutorial_1.html

5.10.3 Category Extras — Comonad Transformers
and Bird-Meertens combinators

Report by: Edward Kmett
Status: experimental

Haskell has derived a lot of benefits from the tools it
has borrowed from category theory, such as functors,
monads, and arrows. However, there are a lot more
tools out there. For instance, comonads have been
barely touched by Haskell programmers. This library
attempts to collect many of the more interesting bits
of category theory and constructive algorithmics in one
place and generalize or dualize previous results where
possible.
The library includes:

◦ A set of comonad transformers in the spirit of the
monad transformer library, including the categori-
cal duals of the Reader, State, and Writer monads
and monad transformers: the Product, Context, and
Supply comonads and comonad transformers, respec-
tively.

◦ An expanded set of “Bananas, Lenses, and Barbed
Wire” for constructive algorithmics, including new
generalized hylomorphisms and combinators for
building up the distributive laws needed to use them

◦ Left and right Kan extensions

◦ Generalizations of standard library functions such as
zip and unzip

◦ Free monads and cofree comonads with free monad
coproducts and cofree comonad coproducts

◦ Ideal monads and their previously unpublished dual,
coideal comonads, with ideal monad coproducts and
cofree comonad products

◦ Higher-order functors, adjunctions, monads, and
comonads that work over functors and map natural
transformations

◦ Indexed (co)monads, including the well-known im-
plementations for indexed state and delimited con-
tinuations

◦ Hyperfunctions

◦ Multiple functor composition operators to support
(co)monad/(co)pointed functor composition and ad-
junction based (co)monads without ambiguity

Future plans

◦ Zippered comonadic automata

◦ A suite of (bi)functor type-level combinators inspired
by similar term-level combinators such as On, Ap,
and Join to help see the connections between differ-
ent (co)monads and to simplify the taking of type-
level derivatives.

◦ A “cofib” example suite to demonstrate program-
ming with comonads.

◦ Better documentation

Further reading

http://comonad.com/haskell/category-extras/

5.10.4 IOSpec

Report by: Wouter Swierstra
Status: active development

The IOSpec library provides a pure specification of sev-
eral functions in the IO monad. This may be of interest
to anyone who wants to debug, reason about, analyze,
or test impure code.
The IOSpec library is essentially a drop-in replace-

ment for several other modules, such as Data.IORef
and Control.Concurrent. Once you are satisfied that
your functions are reasonably well-behaved with re-
spect to the pure specification, you can drop the IOSpec
import in favor of the “real” IO modules. The ideas un-
derlying the previous version are described by a 2007
Haskell Workshop paper.
The latest version, however, supports several exciting

new features. Besides providing a pure specification of
STM, it allows you to build your own pure IO monad
à la carte — allowing you to be explicit about which
effects your program is using.
In the next major release, I would like to incorporate

efficiency improvements suggested by Janis Voigtländer
and allow the extraction of an IO computation from its
pure counterpart.
If you use IOSpec for anything useful at all, I would

love to hear from you.

Further reading

http://www.cs.nott.ac.uk/~wss/repos/IOSpec/

5.11 User interfaces

5.11.1 Gtk2Hs

Report by: Peter Gavin
Participants: Axel Simon, Duncan Coutts, many others
Status: beta, actively developed

48

http://wellquite.org/sessions/
http://wellquite.org/sessions/tutorial_1.html
http://comonad.com/haskell/category-extras/
http://www.cs.nott.ac.uk/~wss/repos/IOSpec/

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows and, of course, various
desktops on Linux, Solaris, FreeBSD, and Mac OS X
using X11.
Gtk2Hs features:

◦ automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support

◦ high quality vector graphics using Cairo

◦ cross-platform, multi-format multimedia playback
with GStreamer

◦ novelties in darcs which will be in the next release:
– completion of the model-view widgets with

stores being implemented in Haskell
– full drag-and-drop and clipboard support

◦ extensive reference documentation

◦ an implementation of the “Haskell School of Expres-
sion” graphics API

◦ support for the Glade visual GUI builder

◦ bindings to some Gnome extensions: GIO/GVfs,
GConf, a source code editor widget, and a widget
that embeds the Mozilla/Firefox rendering engine

◦ an easy-to-use installer for Windows

◦ packages for Fedora, Gentoo (→ 2.9.1), Debian, and
FreeBSD

The Gtk2HS library is continually being improved with
new bindings, documentation, and bug fixes. Outside
contributions are always welcome! We have recently
released version 0.9.13, and are in the process of pack-
aging a new version to be released soon.
In the future we hope to modularize Gtk2Hs and enable
it to be built and distributed with Cabal and Hack-
age. This will enable people to just create, e.g., high-
quality PDF documents using Cairo and Pango, per-
forming image manipulation using Pixbuf and more.
We also plan to bind more of the Gnome platform li-
braries, to allow compliant Gnome applications to be
built entirely in Haskell. We also hope to implement a
regular release schedule, have releases every six months
or so. Since the last HCAR, Peter Gavin has joined the
Gtk2Hs project as release manager which will allow us
to do more regular releases and free resources for fur-
ther completion of the binding.

Further reading

◦ News, downloads, and documentation: http://
haskell.org/gtk2hs/

◦ Development version: darcs get http://code.
haskell.org/gtk2hs/

5.11.2 HQK

Report by: Wolfgang Jeltsch
Participants: Thomas Mönicke
Status: early development

HQK is an effort to provide Haskell bindings to large
parts of the Qt and KDE libraries. At the time of writ-
ing, we are developing a generator which shall produce
most of the binding code automatically. In addition,
we have developed a small Haskell module for access-
ing object-oriented libraries in a convenient way. This
module also supports parts of Qt’s signal-slot mecha-
nism. In contrast to the original C++-based solution,
type correctness of signal-slot connections is checked at
compile time with our library.
We plan to develop a HQK GUI backend for

the Functional Reactive Programming library Grape-
fruit (→ 6.5.1), thereby making Grapefruit multi-
platform.

Further reading

http://haskell.org/haskellwiki/HQK

5.11.3 wxHaskell

Report by: Jeremy O’Donoghue
Participants: Shelarcy, Eric Kow, Mads Lindstroem, and

others
Status: beta, actively developed

The wxHaskell library provides Haskell bindings for a
large subset of the wxWidgets library, which provides
a cross-platform GUI library using native controls.
Using wxHaskell in a GUI project offers a number of

benefits:

◦ Extensive and highly functional set of widgets, many
of which have Haskell bindings which make develop-
ment more declarative in feel.

◦ Native look and feel on all supported platforms (Win-
dows, Mac OS X, and Linux), due to the use of plat-
form native widgets in almost all cases.

◦ Simple deployment: only a small number of shared
libraries need to be distributed with wxHaskell (e.g.,
one DLL on Windows).

◦ wxHaskell is used as the basis for a number of higher-
level libraries including AutoForms http://autoforms.
sourceforge.net/, wxGeneric, etc.

49

http://haskell.org/gtk2hs/
http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://haskell.org/haskellwiki/HQK
http://autoforms.sourceforge.net/
http://autoforms.sourceforge.net/

Over the past year, wxHaskell has seen considerable
development, and is beginning the gain a small com-
munity outside of the core developers. We particularly
appreciate the bugs found (and very often fixed) by
members of the community.
The main changes in wxHaskell over the past year or

so include:

◦ Release of version 0.10.3, including binary installers.
This added support for recent versions of the under-
lying wxWidgets library and for recent versions of
GHC. Prior to this release, getting started with wx-
Haskell was becoming difficult for new users.

◦ Support for many new widget types. We now sup-
port almost all of the widgets provided in the wxWid-
gets distribution, including user-contributed widgets.

◦ Many bugfixes.

◦ Addition of support for XML descriptions of GUI
layouts using XRC. This has been the most requested
feature by users for some time, and has just been
committed to the Darcs repository. We anticipate
a new release with binary installers in the next few
weeks, to make this feature more widely available.

◦ Work on porting to the GHC 6.10 release — wx-
Haskell in Darcs repository compiles out of the box
on 6.10 release candidates.

◦ Improvements to Cabal support, with the intention
of providing Cabal installable packages for wxcore
and wx.

◦ Main repository moved from darcs.haskell.org to
code.haskell.org.

◦ Dropped support for versions of wxWidgets prior to
2.8. We currently support building against wxWid-
gets 2.8.x and 2.9.x. This has resulted in a (small)
number of backward incompatible API changes, com-
pared to earlier versions.

We are working on a tutorial to complement the
Gtk2Hs chapter in the forthcoming “Real World
Haskell” book, so that interested developers can work
through developing a GUI for wxHaskell following a
similar sequence.

Further reading

◦ News, downloads, documentation and tutorials:
http://haskell.org/haskellwiki/WxHaskell

◦ Development version: darcs get http://code.haskell.
org/wxhaskell/

◦ Binary packages: http://haskell.org/haskellwiki/
WxHaskell/Download

5.11.4 Shellac

Report by: Robert Dockins
Status: beta, maintained

Shellac is a framework for building read-eval-print style
shells. Shells are created by declaratively defining a set
of shell commands and an evaluation function. Shel-
lac supports multiple shell backends, including a “ba-
sic” backend, which uses only Haskell IO primitives,
and a full featured “readline” backend based on the
the Haskell readline bindings found in the standard li-
braries.
This library attempts to allow users to write shells

in a declarative way and still enjoy the advanced fea-
tures that may be available from a powerful line editing
package like readline.
Shellac is available from Hackage, as are the re-

lated Shellac-readline, Shellac-editline, and Shellac-
compatline packages. The readline and editline pack-
ages provide Shellac backends for readline and editline,
respectively. The compatline package is a thin wrapper
for either the readline or editline package, depending
on availability at build-time.
Shellac has been successfully used by several inde-

pendent projects and the API is now fairly stable.

Further reading

http://www.cs.princeton.edu/~rdockins/shellac/home

5.11.5 Haskeline

Report by: Judah Jacobson
Status: active development

The Haskeline library provides a user interface for line
input in command-line programs. It is similar in pur-
pose to readline or editline, but is written in Haskell
and aims to be more easily integrated into other Haskell
programs. A simple, monadic API allows this library to
provide guarantees such as restoration of the terminal
settings on exit and responsiveness to control-c events.
In its latest release (0.3.2), Haskeline supports Uni-

code and runs both on the native Windows console and
on POSIX-compatible systems. Its rich line-editing in-
terface is user-customizable and includes emacs and vi
modes, history recall and incremental search, undo sup-
port, and custom tab completion functions.
Plans for further development include adding even

more features to the user interface and continuing to
expand cross-platform support.

Further reading

◦ Wiki and bug tracker: http://trac.haskell.org/
haskeline

◦ Releases: http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/haskeline

50

http://haskell.org/haskellwiki/WxHaskell
http://code.haskell.org/wxhaskell/
http://code.haskell.org/wxhaskell/
http://haskell.org/haskellwiki/WxHaskell/Download
http://haskell.org/haskellwiki/WxHaskell/Download
http://www.cs.princeton.edu/~rdockins/shellac/home
http://trac.haskell.org/haskeline
http://trac.haskell.org/haskeline
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/haskeline
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/haskeline

5.12 Graphics

5.12.1 diagrams

Report by: Brent Yorgey
Participants: Dougal Stanton
Status: active development

The diagrams library provides an embedded domain-
specific language for creating simple pictures and dia-
grams, built on top of the Cairo rendering engine. Val-
ues of type Diagram are built up in a compositional
style from various primitives and combinators, and can
be rendered to a physical medium, such as a file in
PNG, PS, PDF, or SVG format.
For example, consider the following diagram to illus-

trate the 24 permutations of four objects:

The diagrams library was used to create this diagram
with very little effort (about ten lines of Haskell, in-
cluding the code to actually generate permutations).
The source code for this diagram, as well as other ex-
amples and further resources, can be found at http:
/code.haskell.org/diagrams/.
Version 0.2, which adds support for paths, poly-

gons, PDF, PS, and SVG output, text, more alignment
modes, and additional drawing attributes, will be re-
leased soon! Features planned for future versions in-
clude grid and tree layouts, connectors, and animation
support. New contributors and testers welcome!

Further reading

◦ http://code.haskell.org/diagrams/
◦ http://byorgey.wordpress.com/2008/04/30/

new-haskell-diagrams-library/

5.12.2 FieldTrip

Report by: Conal Elliott
Status: active development

FieldTrip is a library for functional 3D graphics. It is
intended for building static, animated, and interactive
3D geometry, efficient enough for real-time synthesis
and display. Since FieldTrip is functional, one describes
what models are, not how to render them (being rather
than doing).
Surfaces are described as functions from 2D space to

3D space. As such, they are intrinsically curved rather

than faceted. Surface rendering tessellates adaptively,
caching tessellations in an efficient, infinite data struc-
ture (from the MemoTrie library (→ 5.7.7)) for reuse.
Surface normals are computed automatically and ex-
actly, using the derivative tools in the vector-space li-
brary (→ 5.6.4).
FieldTrip contains no support for animation, because

it can be used with the Reactive library (→ 6.5.2) for
functional reactive programming (and possibly other
animation frameworks). By design, FieldTrip is com-
pletely orthogonal to any formulation or implementa-
tion of FRP.

Further reading

http://haskell.org/haskellwiki/FieldTrip

5.13 Music

5.13.1 YampaSynth

Report by: George Giorgidze
Status: Experimental

YampaSynth is a purely functional framework for
programming modular synthesizers in Haskell using
Yampa, a domain specific language embedded in
Haskell for programming hybrid systems. A synthe-
sizer, be it a hardware instrument or a pure software
implementation, as here, is said to be modular if it pro-
vides sound-generating and sound-shaping components
that can be interconnected in arbitrary ways.
Basic sound-generating and sound-shaping modules

have been implemented, e.g., oscillator, amplifier,
mixer, envelope generator, filter, etc. These modules
are used to develop example applications:

◦ yampasynth-wav is an application which synthe-
sizes MIDI music and writes the result into a WAVE
audio file.

◦ yampasynth-openal is an application which syn-
thesizes MIDI music and sends audio data in real-
time to a sound card. We use a Haskell binding of
the OpenAL library as an interface to audio hard-
ware.

◦ yampasynth-gtk is an application with a simple
graphical user interface that allows you to play mu-
sic with various instruments in real-time using the
keyboard of your computer. We use a Haskell bind-
ing of the GTK library for GUI programming, and a
Haskell binding of the OpenAL library as an inter-
face to audio hardware.

The source code, together with example applications,
has been cabalized and is available under the BSD3
license.

51

http:/code.haskell.org/diagrams/
http:/code.haskell.org/diagrams/
http://code.haskell.org/diagrams/
http://byorgey.wordpress.com/2008/04/30/new-haskell-diagrams-library/
http://byorgey.wordpress.com/2008/04/30/new-haskell-diagrams-library/
http://haskell.org/haskellwiki/FieldTrip

Future plans

We would like to see a richer collection of sound-
generating and sound-shaping modules in the frame-
work, and complete implementation of MIDI, Sound-
Font, and related standards. However, one might find
some other interesting continuation of the work. We
are open for suggestions and would be happy if some-
one wishes to collaborate.

Further reading

◦ Related papers, slides, demos, and talks are available
from my homepage

◦ YampaSynth Cabal package on Hackage
◦ HCodecs is a supporting library which provides func-

tions to read, write, and manipulate MIDI, WAVE,
and SoundFont2 multimedia files. It is written en-
tirely in Haskell.

5.13.2 Haskore revision

Report by: Paul Hudak
Participants: Henning Thielemann
Status: experimental, active development

Haskore is a Haskell library originally written by Paul
Hudak that allows music composition within Haskell,
i.e., without the need of a custom music programming
language. This collaborative project aims at improv-
ing consistency, adding extensions, revising design de-
cisions, and fixing bugs. Specific improvements include:

1. The Music data type has been generalized in the
style of Hudak’s “polymorphic temporal media.” It
has been made abstract by providing functions that
operate on it.

2. The notion of instruments is now very general.
There are simple predefined instances of the Music
data type, where instruments are identified by
Strings or General MIDI instruments, but any other
custom type is possible, including types with instru-
ment specific parameters.

3. Creation of CSound orchestra files in a functional
style including feedback and signal processors with
multiple outputs.

4. Support for the software synthesizer SuperCollider
both in real-time and non-real-time mode through
the Haskell interface by Rohan Drape.

5. Conversion between MIDI file and Haskore repre-
sentation of Music. Real-time MIDI is supported via
ALSA on Linux.

6. A package for lists of events with time information
has been factored out, as well as a package for non-
negative numbers, which occur as time differences in
event lists.

7. Support for infinite Music objects is improved.
CSound may be fed with infinite music data through
a pipe, and an audio file player like Sox can be fed
with an audio stream entirely rendered in Haskell.
(See Audio Signal Processing project (→ 6.6.1).)

Future plans

There is an ongoing effort by Paul Hudak to rewrite
Haskore targeting at education.

Further reading

http://www.haskell.org/haskellwiki/Haskore

5.14 Web and XML programming

5.14.1 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: seventh major release (current release: 8.1.1)

Description

The Haskell XML Toolbox (HXT) is a collection of
tools for processing XML with Haskell. It is itself
purely written in Haskell 98. The core component of
the Haskell XML Toolbox is a validating XML-Parser
that supports almost fully the Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). There is a valida-
tor based on DTDs and a new more powerful one for
Relax NG schemas.
The Haskell XML Toolbox is based on the ideas of

HaXml (→ 5.14.2) and HXML, but introduces a more
general approach for processing XML with Haskell.
The processing model is based on arrows. The arrow
interface is more flexible than the filter approach taken
in the earlier HXT versions and in HaXml. It is also
safer; type checking of combinators becomes possible
with the arrow approach.
HXT consists of two packages, the old first approach

(hxt-filter) based on filters and the newer and more
flexible and save approach using arrows (hxt). The old
package hxt-filter, will further be maintained to work
with the latest ghc version, but new development will
only be done with the arrow based hxt package.

Features

◦ Validating XML parser

◦ Very liberal HTML parser

◦ Lightweight lazy parser for XML/HTML based on
Tagsoup (→ 5.14.3)

◦ Easy de-/serialization between native Haskell data
and XML by pickler and pickler combinators

◦ XPath support

52

http://cs.nott.ac.uk/~ggg/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/YampaSynth
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/HCodecs
http://www.haskell.org/haskellwiki/Haskore

◦ Full Unicode support

◦ Support for XML namespaces

◦ Cabal package support for GHC

◦ HTTP access via Haskell bindings to libcurl

◦ Tested with W3C XML validation suite

◦ Example programs

◦ Relax NG schema validator

◦ An HXT Cookbook for using the toolbox and the
arrow interface

◦ Basic XSLT support

◦ Darcs repository with current development version
(8.1.2) under http://darcs2.fh-wedel.de/hxt

Current Work

Currently mainly maintenance work is done. This in-
cludes conversion to work with ghc.6.10 and space and
runtime optimizations.
It is planned to further develop and extend the vali-

dation part with Relax NG and the conversion from/to
Haskell internal data. The pickler approach used in
that task can be extended to derive DTDs, Relax NG
Schemas or XML Schemas for Validation of the exter-
nal XML representation.
The HXT library will be extensively used in the

Holumbus project (→ 6.3.1).

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes downloads, online API documentation, a
cookbook with nontrivial examples of XML process-
ing using arrows and RDF documents, and master
theses describing the design of the toolbox, the
DTD validator, the arrow based Relax NG val-
idator, and the XSLT system. A getting started
tutorial about HXT is available in the Haskell Wiki
(http://www.haskell.org/haskellwiki/HXT).

5.14.2 HaXml

Report by: Malcolm Wallace
Status: stable, maintained

HaXml provides many facilities for using XML from
Haskell. The public stable release on Hackage is 1.13.3,
with support for building via Cabal for ghc-6.8.x.
The development version (currently at 1.19.4, also

available on Hackage or through a Darcs repository)
includes a much-requested lazy parser and a SAX-like
streaming parser. Some minor work still(!) remains to
tidy things up before the development version is tagged
and released as stable.

The lazy parser combinators used by HaXml now live
in a separate library package called polyparse.

Further reading

◦ http://haskell.org/HaXml
◦ http://www.cs.york.ac.uk/fp/HaXml-devel
◦ darcs get http://darcs.haskell.org/packages/HaXml
◦ http://www.cs.york.ac.uk/fp/polyparse

5.14.3 tagsoup

Report by: Neil Mitchell

TagSoup is a library for extracting information out of
unstructured HTML code, sometimes known as tag-
soup. The HTML does not have to be well formed,
or render properly within any particular framework.
This library is for situations where the author of the
HTML is not cooperating with the person trying to
extract the information, but is also not trying to hide
the information.
The library provides a basic data type for a list of un-

structured tags, a parser to convert HTML into this tag
type, and useful functions and combinators for finding
and extracting information. The library has seen real
use in an application to give Hackage (→ 5.1) listings,
and is used in the next version of Hoogle (→ 4.4.1).
Work continues on the API of tagsoup, and the im-

plementation. Lots of people have made use of tagsoup
in their applications, generating lots of valuable feed-
back.

Further reading

http://www-users.cs.york.ac.uk/~ndm/tagsoup

5.15 System

5.15.1 hinotify

Report by: Lennart Kolmodin
Status: alive

“hinotify” is a simple Haskell wrapper for the Linux
kernel’s inotify mechanism. inotify allows applications
to watch file changes, since Linux kernel 2.6.13. You
can for example use it to do a proper locking procedure
on a set of files, or keep your application up do date on
a directory of files in a fast and clean way.
As file and directory notification is available for many

operating systems, upcoming work will include to try
to find a common API that could be shared for all
platforms. Most recent work has been to see what is
possible to do under Microsoft Windows, and finding
a suitable API for both platforms. This has been a
joint work with Niklas Broberg. We are still looking
for contributors to *BSD and Mac OS X. If you are
interested, contact us.

53

http://darcs2.fh-wedel.de/hxt
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.haskell.org/haskellwiki/HXT
http://haskell.org/HaXml
http://www.cs.york.ac.uk/fp/HaXml-devel
http://darcs.haskell.org/packages/HaXml
http://www.cs.york.ac.uk/fp/polyparse
http://www-users.cs.york.ac.uk/~ndm/tagsoup

Further reading

◦ Development version:
darcs get
http://www.haskell.org/~kolmodin/code/hinotify/

◦ Latest released version: http://www.haskell.org/
~kolmodin/code/hinotify/download/

◦ Documentation: http://www.haskell.org/~kolmodin/
code/hinotify/docs/api

◦ inotify: http://www.kernel.org/pub/linux/kernel/
people/rml/inotify/

5.15.2 hlibev

Report by: Aycan Irican
Participants: Evrim Ulu
Status: Unstable

hlibev is an FFI wrapper for “libev event loop”. Cur-
rently we only implemented IO and Timer event types
on the Debian GNU/Linux platform. We implemented
a simple http responder to see it’s performance. You
can get it from hackage.

Further reading

http://software.schmorp.de/pkg/libev.html

54

http://www.haskell.org/~kolmodin/code/hinotify/
http://www.haskell.org/~kolmodin/code/hinotify/download/
http://www.haskell.org/~kolmodin/code/hinotify/download/
http://www.haskell.org/~kolmodin/code/hinotify/docs/api
http://www.haskell.org/~kolmodin/code/hinotify/docs/api
http://www.kernel.org/pub/linux/kernel/people/rml/inotify/
http://www.kernel.org/pub/linux/kernel/people/rml/inotify/
http://software.schmorp.de/pkg/libev.html

6 Applications and Projects

6.1 For the Masses

6.1.1 Darcs

Report by: Eric Kow
Participants: Jason Dagit, Simon Michael
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
We have recently released darcs 2.1, providing bet-

ter HTTP support and fixes to our use of the pend-
ing patch. The new version also creates darcs 2 format
repositories by default, as darcs 2 is starting to be more
widely used and shipped by major package distributors.
This change will bring the new improved conflicts han-
dling and merging semantics to a wider audience.
In the bigger picture, the past six months have been

particularly invigorating for the darcs team. GHC is
moving to git from darcs and we are applying their feed-
back to make darcs better. The decision to switch has
been painful, but it has spurred us into more vigorous
action in building up the darcs team. As a result of this
switch, we have undertaken several long term projects
to improve our development practices and grow the
darcs community:

1. Increased automation. We now use automated
buildbots for major supported platforms. The build-
bots run our ever-growing suite of test cases, includ-
ing a new performance regression suite.

2. Code documentation. We have begun an effort
to provide better developer documentation for the
darcs. We are integrating many fine Haskell tools,
such as Haddock and Hoogle at http://darcs.net/
api-doc.

3. Darcs Weekly News. Inspired from Haskell Weekly
News, we are using this bulletin to help on-lookers
to catch up with recent discussions, issues resolved,
and patches applied. See http://wiki.darcs.net/
DarcsWiki/DarcsWeeklyNews.

4. Regular hacking sprints. The first darcs hacking
sprint was held on 25–26 October and was a great
success! We hope to host similar sprints twice a year
as a means for experienced developers to concentrate
on darcs, and also for newcomers to get to grips with
the code.

These practices should help us continue to steadily im-
prove darcs, and we are always open to contributions.
Haskell hackers, we need your help!
Darcs is free software licensed under the GNU GPL.

Further reading

http://darcs.net

6.1.2 xmonad

Report by: Don Stewart
Status: active development

xmonad is a tiling window manager for X. Windows are
arranged automatically to tile the screen without gaps
or overlap, maximizing screen use. Window manager
features are accessible from the keyboard: a mouse is
optional. xmonad is written, configured, and extensi-
ble in Haskell. Custom layout algorithms, key bindings,
and other extensions may be written by the user in con-
fig files. Layouts are applied dynamically, and different
layouts may be used on each workspace. Xinerama is
fully supported, allowing windows to be tiled on several
physical screens.
The new release 0.7 of xmonad added full support for

the GNOME and KDE desktops, and adoption contin-
ues to grow, with binary packages of xmonad available
for all major distributions.

Further reading

◦ Homepage: http://xmonad.org/
◦ Darcs source:
darcs get http://code.haskell.org/xmonad

◦ IRC channel: #xmonad @ irc.freenode.org
◦ Mailing list: 〈xmonad@haskell.org〉

6.2 Education

6.2.1 Exercise Assistants

Report by: Bastiaan Heeren
Participants: Alex Gerdes, Johan Jeuring, Josje Lodder,

Harrie Passier, Sylvia Stuurman
Status: experimental, active development

55

http://darcs.net/api-doc
http://darcs.net/api-doc
http://wiki.darcs.net/DarcsWiki/DarcsWeeklyNews
http://wiki.darcs.net/DarcsWiki/DarcsWeeklyNews
http://darcs.net
http://xmonad.org/
http://code.haskell.org/xmonad
mailto: xmonad at haskell.org

At the Open Universiteit Nederland we are building
a collection of tools that support students in solving
exercises incrementally by checking intermediate steps.
These tools are written in Haskell. The distinguishing
feature of our tools is the detailed feedback that they
provide, on several levels. For example, we have an
online exercise assistant that helps to rewrite logical
expressions into disjunctive normal form. Students get
instant feedback when solving an exercise, and can ask
for a hint at any point in the derivation. Other areas
covered by our tools are solving linear equations, reduc-
ing matrices to echelon normal form, and simplifying
expressions in relation algebra. We have just started to
explore exercise assistants for learning how to program
in a (functional) programming language.
For each exercise domain, we have formulated a set of

rewrite rules, as well as a number of unsound (or buggy)
rules to catch common mistakes. With these rules we
can check all intermediate steps submitted by the user.
We use datatype-generic rewriting technology, which
makes it possible to observe the rules (e.g., for generat-
ing documentation, or for automated testing). We also
defined strategies for solving the exercises. A strategy
dictates in which order the rules have to be applied to
reach the solution, and such a strategy takes the form
of a context-free grammar. These strategies support us
in reporting helpful and informative feedback.
We are offering our tools and our strategies as web-

services to other e-learning tools and environments,
such as MathDox and LeActiveMath. We have col-
lected data on student interactions with our system,
and we are currently analyzing this to further improve
our exercise assistants. For the near future, we have
scheduled more sessions with students from our uni-
versity to validate our approach. We also plan to make
more use of generic programming techniques to support
exercises from many more, different domains.
An online prototype version for rewriting logical ex-

pressions is available and can be accessed from our
project page.

Further reading

◦ http://ideas.cs.uu.nl/trac
◦ Strategies for exercises. Bastiaan Heeren, Johan

Jeuring, Arthur van Leeuwen, and Alex Gerdes. In-
ternational Conference on Mathematical Knowledge
Management (MKM’08).

◦ Recognizing Strategies. Bastiaan Heeren, Johan
Jeuring. Reduction Strategies in Rewriting and Pro-
gramming (WRS’08)

◦ A Lightweight Approach to Datatype-Generic
Rewriting. Thomas van Noort, Alexey Rodriguez,
Stefan Holdermans, Johan Jeuring, and Basti-
aan Heeren. Workshop on Generic Programming
(WGP’08).

6.2.2 Holmes, plagiarism detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer

Years ago, Jurriaan Hage developed Marble to detect
plagiarism among Java programs. Marble was written
in Perl, takes just 660 lines of code and comments, and
does the job well. The techniques used there, however,
do not work well for Haskell, which is why a master
thesis project was started, starring Brian Vermeer as
the master student, to see if we can come up with a
working system to discover plagiarism among Haskell
programs. We are fortunate to have a large group of
students each year that try their hand at our functional
programming course (120-130 per year), and we have
all the loggings of Helium that we hope can help us tell
whether the system finds enough plagiarism cases. The
basic idea is to implement as many metrics as possible,
and to see, empirically, which combination of metrics
scores well enough for our purposes. The implementa-
tion will be made in Haskell. One of the things that
we are particularly keen about, is to make sure that for
assignments in which students are given a large part of
the solution and they only need to fill in the missing
parts, we still obtain good results.
In May this was the plan, and it still is.

6.2.3 Geordi IRC C++ eval bot

Report by: Eelis van der Weegen
Status: mature

Geordi is an IRC bot that compiles and (optionally)
runs C++ code snippets. It has proved to be a very
useful tool when teaching and discussing C++ on IRC.
It is written in Haskell, and, being deployed on C++
channels at most of the big IRC networks, has the
sneaky side-effect of getting some C++ers interested
in Haskell ;-).
Snapshots and Darcs repository can be found at the

homepage.

Further reading

http://www.eelis.net/geordi/

6.2.4 Lambda Shell

Report by: Robert Dockins
Status: beta, maintained

The Lambda Shell is a feature-rich shell environment
and command-line tool for evaluating terms of the pure,
untyped lambda calculus. The Lambda Shell builds on
the shell creation framework Shellac (→ 5.11.4), and
showcases most of Shellac’s features.
Features of the Lamba Shell include:

56

http://ideas.cs.uu.nl/trac
http://www.eelis.net/geordi/

◦ Evaluate lambda terms directly from the shell
prompt using normal or applicative order. In nor-
mal order, one can evaluate to normal form, head
normal form, or weak head normal form.

◦ Define aliases for lambda terms using a top level,
non-recursive “let” construct.

◦ Show traces of term evaluation, or dump the trace
to a file.

◦ Count the number of reductions when evaluating
terms.

◦ Test two lambda terms for beta-equivalence (that is;
if two terms, when evaluated to normal form, are
alpha equivalent).

◦ Programs can be entered from the command line (us-
ing the -e option) or piped into stdin (using the -s
option).

◦ Perform continuation passing style (CPS) transforms
on terms before evaluation using the double-bracket
syntax, e.g., “[[five]]”.

The Lambda Shell was written as a showcase and
textbook example for how to use the Shellac shell-
creation library. However, it can also be used to gain
a better understanding of the pure lambda calculus.

Further reading

◦ http://http://www.cs.princeton.edu/~rdockins/
lambda/home

◦ http://http://www.cs.princeton.edu/~rdockins/
shellac/home

6.2.5 INblobs — Interaction Nets interpreter

Report by: Miguel Vilaca
Participants: Daniel Mendes
Status: active, maintained
Portability: portable (depends on wxHaskell)

INblobs is an editor and interpreter for Interaction Nets
— a graph-rewriting formalism introduced by Lafont,
inspired by Proof-nets for Multiplicative Linear Logic.
INblobs is built on top of the front-end Blobs from

Arjan van Ĳzendoorn, Martĳn Schrage, and Malcolm
Wallace.

New features

◦ automatic transformation of textual functional terms
into interaction nets

◦ generation of textual descriptions allowing the use of
INblobs as an editor/frontend for textual IN compil-
ers

◦ Valid IN System check

◦ minor changes for better usability

Further reading

◦ Homepage:
http://haskell.di.uminho.pt/jmvilaca/INblobs/

◦ also available in Hackage (http://hackage.haskell.org/
cgi-bin/hackage-scripts/package/INblobs)

◦ Blobs: http://www.cs.york.ac.uk/fp/darcs/Blobs

6.2.6 Soccer-Fun

Report by: Peter Achten
Status: active development

Soccer-Fun is an educational project to stimulate func-
tional programming by thinking about, designing, im-
plementing, running, and competing with the brains
of football players! It is open for participation by ev-
erybody who likes to contribute. It is not restricted
to a particular functional programming language. The
current implementation is in Clean (→ 3.2.3).
With Soccer-Fun you can program footballer brains

and run them in the environment that you see here:

The brain of a footballer is really a function, as was
once explained by Johan Cruĳff himself:

“If I play the ball and want to pass it to someone,
then I need to consider my guardian, the wind,
the grass, and the velocity with which players are
moving. We compute the force with which to kick
and its direction within a tenth of a second. It
takes the computer two minutes to do the same!”
(De Tĳd, 2 mei 1987)

The brain that you program has a different type than
the one above. It takes five parameters: the referee ac-
tions, the football (if freely available), all players on
the field except you, you, and your current memory.
Using these parameters, we compute a footballer’s ac-
tion such as moving, kicking the ball, as well as a new
memory value.

57

http://http://www.cs.princeton.edu/~rdockins/lambda/home
http://http://www.cs.princeton.edu/~rdockins/lambda/home
http://http://www.cs.princeton.edu/~rdockins/shellac/home
http://http://www.cs.princeton.edu/~rdockins/shellac/home
http://haskell.di.uminho.pt/jmvilaca/INblobs/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/INblobs
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/INblobs
http://www.cs.york.ac.uk/fp/darcs/Blobs

In a nutshell, it is your task to create a team of foot-
ballers, equip them with the brains that you have cre-
ated, and see whether you can beat other teams!

Future plans

There are many plans for the future:

◦ Use TCP/IP to allow individual footballers to “hook
in” the framework. Then, footballers can be pro-
grammed in arbitrary programming languages and
join Soccer-Fun.

◦ Related: in the current framework, the code of all
footballers is included in the framework. What
about using interpreter technology, like Jan Martin
Jansen’s SAPL?

◦ Also related: the semantics is less suited for an “in-
dividual” footballer approach, because individual ac-
tions can affect other players (think of gaining the
ball). A more fine grained semantic model can be de-
veloped to allow individual actions to be performed.

◦ Currently, all footballers and the referee are panop-
tic, which is not very realistic. Programming brains
becomes much more challenging if we limit the view-
ing range of footballers. In that situation, footballers
need to maintain some sort of mental model of the
whereabouts of all players.

◦ The current rendering is plain 2D. It would be more
informative to use a simple 2.5D rendering.

Further reading

◦ http://www.cs.ru.nl/P.Achten/SoccerFun/SoccerFun.
html

◦ http://www.st.cs.ru.nl/papers/2008/
achp08-FDPE08-SoccerFun.pdf

6.3 Web Development

6.3.1 Holumbus Search Engine Framework

Report by: Uwe Schmidt
Participants: Timo B. Hübel, Sebastian Reese,

Sebastian Schlatt, Stefan Schmidt
Status: first release

Description

The Holumbus framework consists of a set of modules
and tools for creating fast, flexible, and highly cus-
tomizable search engines with Haskell. The framework
consists of two main parts. The first part is the indexer
for extracting the data of a given type of documents,
e.g., documents of a web site, and store it in an appro-

priate index. The second part is the search engine for
querying the index.
An instance of the Holumbus framework is the

Haskell API search engine Hayoo! (http://holumbus.
fh-wedel.de/hayoo/). The web interface for Hayoo! is
implemented with the Janus web server, written in
Haskell and based on HXT (→ 5.14.1).

Features

◦ Highly configurable crawler module for flexible in-
dexing of structured data

◦ Customizable index structure for an effective search

◦ find as you type search

◦ Suggestions

◦ Fuzzy queries

◦ Customizable result ranking

◦ Index structure designed for distributed search

◦ Darcs repository with current development version
under http://darcs2.fh-wedel.de/holumbus

Current Work

Currently the indexer and search module will be used
and extended to support the Hayoo! engine for search-
ing the hackage package library (http://holumbus.fh-
wedel.de/hayoo/hayoo.html).
Stefan Schmidt will finish his master thesis develop-

ing a framework for distributed computing using the
Google map–reduce approach at the end of this year.
This extension will be used in the future to recompute
and update the Hayoo! and other indexes much faster
on a whole cluster of machines.
The design of this map–reduce framework and library

is independent of the Holumbus and Hayoo! applica-
tions. It will be possible with this system to distribute
arbitrary task on a cluster of machines. It will only
be necessary to separate an application into indepen-
dent parts and then support a simple interface to the
map-reduce framework by an instantiation of a Haskell
class.

Further reading

The Holumbus web page (http://holumbus.fh-wedel.
de/) includes downloads, Darcs web interface, cur-
rent status, requirements, and documentation. Timo
Hübel’s Master Thesis describing the Holumbus in-
dex structure and the search engine is available
at http://holumbus.fh-wedel.de/branches/develop/doc/
thesis-searching.pdf.

58

http://www.cs.ru.nl/P.Achten/SoccerFun/SoccerFun.html
http://www.cs.ru.nl/P.Achten/SoccerFun/SoccerFun.html
http://www.st.cs.ru.nl/papers/2008/achp08-FDPE08-SoccerFun.pdf
http://www.st.cs.ru.nl/papers/2008/achp08-FDPE08-SoccerFun.pdf
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/
http://darcs2.fh-wedel.de/holumbus
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf

6.3.2 Top Writer

Report by: Jon Strait
Status: experimental, active development

Top Writer is a web application for technical writers to
easily edit and assemble topic-oriented user guides and
other high level reference works. Application users edit
within a structured framework, using meaningful ap-
plication elements to chunk and contain content. Users
can extend the application with their own elements and
rules, if needed. Delivery of content is meant to be
multi-format, with each format having separate tem-
plating rules.
The server part of the application is coded in Haskell

using FastCGI on a lighttpd server and using the
HDBC library connecting to a PostgreSQL database
server. The client web browser part heavily uses the
jQuery Javascript toolkit.

Future plans

Currently, the focus for delivering output is on gen-
erated HTML, but plans are also to generate PDF
and any other format that is reasonable. Other work
is focused on collaborative features, allowing multiple
clients to share projects, edit contained documents con-
currently, and see other project member’s changes im-
mediately. The more element-like structure for editing
a document can facilitate this, removing the complexity
of having to consider overlapping changes.

Further reading

http://www.moonloop.net/topwriter

6.3.3 Panda blog engine

Report by: Jinjing Wang
Status: experimental

Panda is a simple static blog engine written in Haskell.
It uses plain text as data source and (preferably) an
SCM for data management.
Contrary to main stream functional programs,

Panda embraces object oriented designs and idioms,
in particular, it strictly follows the MVC pattern and
programmed in way that looks like traditional object
oriented languages. Despite this coding style, under-
neath it is still Haskell, so it benefits from static typing,
purity and laziness.
Panda is free software under GPL, future develop-

ment will focus on usability (blindly follows the KISS
principle) and hackability (empower the user to ex-
tend/customize the framework).

Further reading

http://www.haskell.org/haskellwiki/Panda

6.3.4 InputYourData.com

Report by: Enzo Haussecker
Status: beta

I would like to announce the publication of InputY-
ourData.com (beta) — the online resource tool for fi-
nancial, mathematical, and scientific calculations. All
web applications found at http://inputyourdata.com/
are written solely in Haskell and based on the Net-
work.CGI framework.
This website began as an experiment to familiarize

myself with the monadic features of Haskell and their
use in web programming. Namely, the mapping and
manipulation of user inputs as typed objects. Through
these experiments I found that Haskell allows for an
efficient system where a variety of operations can be
performed while minimizing as many resources (such
as time and memory space) as possible.
I am now interested in developing a similar type of

website, except wiki style — where all web applica-
tions are created by the user. Essentially, I am de-
signing a web application where users can symbolically
declare the arguments of a function and that function’s
call based on arbitrary variables. For example, say a
user would like to create a web application to com-
pute the roots of a second degree polynomial. He/she
would simply declare the arguments to her function —
three complex numbers a b and c, and the call of that
function — (−b ± sqrt (b2 − 4 ∗ a ∗ c))/(2 ∗ a). The
product of that user’s inputs will render a web appli-
cation that looks similar to http://inputyourdata.com/
cgi-bin/quadratic.cgi (all text is to be updated by the
user as well). As one could imagine, other, more com-
plex functions involving vectors, matrices, stock prices,
and other arguments can also be defined in terms of

59

http://www.moonloop.net/topwriter
http://www.haskell.org/haskellwiki/Panda
http://inputyourdata.com/
http://inputyourdata.com/cgi-bin/quadratic.cgi
http://inputyourdata.com/cgi-bin/quadratic.cgi

arbitrary variables and declared as inputs to my wiki-
style web application.
If you are intrigued by this project and you have

substantial experience in designing Haskell-based web
applications, please send me (〈ehaussecker@gmail.com〉)
your resume and a brief summery of why you are inter-
ested.

6.3.5 Hircules

Report by: Jens Petersen
Status: hibernating

Hircules is an IRC client built on top of gtk2hs (→
5.11.1).
Not too much has happened recently except an up-

date in cvs to make it build with ghc-6.8 (i.e., change
from Data.FiniteMap to Data.Map).
I am planning finally to move the code within this

year to code.haskell.org, move to cabal and make a new
working release in Hackage; maybe making use of the
Haskell irc library. I still would like to add support for
multiple irc connections and get other people involved.

Further reading

http://www.haskell.org/hircules/

6.4 Data Management and Visualization

6.4.1 Pandoc

Report by: John MacFarlane
Participants: Recai Oktaş, Andrea Rossato, Peter Wang
Status: active development

Pandoc aspires to be the swiss army knife of text
markup formats: it can read markdown and (with some
limitations) HTML, LaTeX, and reStructuredText, and
it can write markdown, reStructuredText, HTML, Doc-
Book XML, OpenDocument XML, ODT, RTF, groff
man, MediaWiki markup, GNU Texinfo, LaTeX, Con-
TeXt, and S5. Pandoc’s markdown syntax includes ex-
tensions for LaTeX math, tables, definition lists, foot-
notes, and more.
The latest release, 1.0.0.1, features

◦ New writers for GNU Texinfo (thanks to Peter
Wang), OpenDocument XML (thanks to Andrea
Rossato), ODT (OpenOffice document), and Medi-
aWiki.

◦ A new delimited code block syntax, with optional
syntax highlighting (using the highlighting-kate li-
brary).

◦ Handy generic functions for querying and transform-
ing documents without lots of boilerplate (thanks to
Andrea Rossato)

◦ A cleaner build system: Pandoc can now be built as
a regular Cabal package, and can be installed using
cabal-install.

◦ Better support for math, including display math

◦ HTML sanitizing for use in web applications

◦ Optional (and experimental) integration with An-
drea Rossato’s hs-citeproc library, for automatic gen-
eration of citations and bibliography in any of pan-
doc’s output formats.

Future plans include improved citation support and
better support for writing literate Haskell in mark-
down. Contributions are welcome.

Further reading

http://johnmacfarlane.net/pandoc/

6.4.2 tiddlyisar

Report by: Slawomir Kolodynski
Status: under development

tiddlyisar is a tool for generating TiddlyWiki render-
ings of IsarMathLib source. IsarMathLib is a library
of mathematical proofs formally verified by the Is-
abelle/ZF theorem proving environment. The tiddly-
isar tool parses IsarMathLib source and generates Tid-
dlyWiki markup text. The generated view features
jsMath based mathematical symbols, cross referenced
theorems, and structured proofs expanded on request.
The rendering can be viewed on the Tiddly Formal
Math site. tiddlyisar is included in the IsarMathLib
distribution under GPLv3 license. The source can
be browsed at the IsarMathLib Subversion repository
URL provided below.

Further reading

◦ http://savannah.nongnu.org/projects/isarmathlib
◦ http://www.cl.cam.ac.uk/research/hvg/Isabelle/
◦ http://formalmath.tiddlyspot.com
◦ http://svn.savannah.gnu.org/viewvc/trunk/

isarmathlib/tiddlyisar/?root=isarmathlib

6.4.3 Emping

Report by: Hans van Thiel

Emping 0.5 has been released. Emping is a (proto-
type of) a tool for the analysis of multi-variate nomi-
nal data. For example, in a table of 8000 mushrooms
and 20 attributes, constructed from a field guide, the
tool finds which attribute-values determine whether a
mushroom is edible or poisonous. But Emping finds

60

mailto: ehaussecker at gmail.com
http://www.haskell.org/hircules/
http://johnmacfarlane.net/pandoc/
http://savannah.nongnu.org/projects/isarmathlib
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://formalmath.tiddlyspot.com
http://svn.savannah.gnu.org/viewvc/trunk/isarmathlib/tiddlyisar/?root=isarmathlib
http://svn.savannah.gnu.org/viewvc/trunk/isarmathlib/tiddlyisar/?root=isarmathlib

not only single factors, but also pairs, triples, and all
other combinations which distinguish between the con-
sequent values. Such reduced rules are generalizations
of rows in the original table, so r1 could stand for orig-
inals a,b,c and r2 for a,b. In that case r2 implies r1
or, conversely, r1 entails r2. The reductions are par-
tially ordered. Emping also finds all such dependen-
cies, including the equivalences where different reduc-
tions stand for the same original rules. New in Emp-
ing 0.5 is that, thanks to the functional graph library
which comes with GHC, these dependencies are now
expressed in a Graphviz format and can be shown with
a Graphviz reader. Also new is the sort by length of the
reduced rules, and of the reduced rules in each equiv-
alence class. This makes the results much more read-
able. Starting in 0.4, it is now also possible to have
blank fields, but this feature has only been summarily
tested. The Gtk2Hs based GUI (→ 5.11.1), first intro-
duced in version 0.4, has been improved in Emping 0.5.
Data tables, as well as output tables of reduced rules
and graph legends, all use the default CSV format of
the Open Office Calc spreadsheet.

Further reading

See http://home.telfort.nl/sp969709/emp/empug.html
for more, including two white papers and downloads.

6.4.4 HaExcel — From Spreadsheets to Relational
Databases and Back

Report by: Jácome Cunha
Participants: João Saraiva, Joost Visser
Status: Unstable, work in progress

HaExcel is a framework to manipulate, transform,
and query spreadsheets. It is composed by a
generic/reusable library to map spreadsheets into rela-
tional database models and back: this library contains
an algebraic data type to model a (generic) spreadsheet
and functions to transform it into a relational model
and vice versa. Such functions implement the refine-
ment rules introduced in paper “From Spreadsheets
to Relational Databases and Back”. The library in-
cludes two code generator functions: one that produces
the SQL code to create and populate the database,
and a function that generates Excel/Gnumeric code to
map the database back into a spreadsheet. A MySQL
database can also be created and manipulated using
this library under HaskellDB.
The tool also contains a front-end to read spread-

sheets in the Excel and Gnumeric formats: the front-
end reads spreadsheets in portable XML documents us-
ing the UMinho Haskell Libraries. We reuse the spatial
logic algorithms from the UCheck project to discover
the tables stored in the spreadsheet.
Finally, two spreadsheet tools are available: a batch

and an online tool that allows the users to read, trans-
form, refactor, and query spreadsheets.

The sources and the online tool are available from
the project home page.
We are currently exploring foreign key constraints

from their detection to their migration to the generated
spreadsheet. Another topic under study is the direct
integration of the framework in Excel implemented as
an Excel plug-in.

Further reading

http://haskell.di.uminho.pt/jacome/index.html

6.4.5 Between Types and Tables

Report by: Bas Lĳnse
Participants: Rinus Plasmeĳer
Status: experimental

My master’s thesis project aimed at bridging the gap
between data stored in relational databases and data
structures in a functional language. We have developed
a method to derive both a relational database schema
and a set of data types in Clean (→ 3.2.3) from an
ORM (Object Role Modeling) model. We then realized
an automatic mapping between values of those Clean
types and their counterparts in the relational database
using Clean’s generic programming mechanism. We de-
fined a generic library which provides the basic CRUD
(Create, Read, Update, Delete) operations for any con-
ceptual entity defined in an ORM model.

Future plans

Currently, the library is a proof of concept that only
works with Clean on Linux and a MySQL database.
However, we intend to integrate this library with the
work on dynamic workflow specifications in the iTask
system (→ 6.8.4) somewhere in the (near) future.

Further reading

http://www.st.cs.ru.nl/papers/2008/
lĳb08-BetweenTypesAndTablesMasterThesis.pdf

6.4.6 SdfMetz

Report by: Tiago Miguel Laureano Alves
Participants: Joost Visser
Status: stable, maintained

SdfMetz supports grammar engineering by calculating
grammar metrics and other analyses. Currently it sup-
ports four different grammar formalisms (SDF, DMS,
Antlr, and Bison). The category of supported met-
rics are size, complexity, structural and disambigua-
tion. The disambiguation metrics are applicable to the
SDF formalism only. Metrics output is a textual re-
port or in Comma Separated Value format. The addi-

61

http://home.telfort.nl/sp969709/emp/empug.html
http://haskell.di.uminho.pt/jacome/index.html
http://www.st.cs.ru.nl/papers/2008/lijb08-BetweenTypesAndTablesMasterThesis.pdf
http://www.st.cs.ru.nl/papers/2008/lijb08-BetweenTypesAndTablesMasterThesis.pdf

tional analyses implemented are graph visualization of
the immediate successor graph, transitive closure graph
and strongly-connected components graph outputted
in DOT format, and visualization of the non-singleton
levels of a grammar.
The definition of all except the ambiguity and the

NPath metrics were taken from the paper A metrics
suite for grammar based-software by James F. Power
and Brian A. Malloy. The ambiguity metrics were de-
fined by the tool author exploiting specific aspects of
SDF grammars, and the NPath metric definition was
taken from the paper NPATH: a measure of execution
path complexity and its applications.
The tool was used successfully in a grammar engi-

neering work presented in the paper A Case Study in
Grammar Engineering.

Future plans

Efforts are underway to develop functionalities to com-
pute quality profiles based on histograms. Further-
more, more metrics will be added, and a web-interface
is planned.
The tool was initially developed in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) to develop a grammar for ISO VDM-
SL.

Further reading

The web site of SdfMetz (http://sdfmetz.googlecode.
com) includes the tool source code, and pointers to rel-
evant work about grammar metrication.

6.5 Functional Reactive Programming

6.5.1 Grapefruit

Report by: Wolfgang Jeltsch
Participants: Matthias Reisner
Status: provisional

Grapefruit is a Functional Reactive Programming li-
brary with special support for graphical user interfaces
and animated graphics.
Reactive and interactive systems are described as

networks of basic components and built using arrow
combinators. The parts of such networks communicate
via signals. There exist three kinds of them: discrete
signals, continuous signals, and segmented signals. Dis-
crete signals describe event sequences and continuous
signals denote values that vary over time. Segmented
signals also describe time-varying values. However, a
segmented signal splits time into slices whereby a value
change can only occur at the start of a new slice. Sig-
nals can be composed in a purely functional way.
At the moment of writing, we are changing Grape-

fruit’s interface and implementation fundamentally.

Our new implementation will support memoization of
signals through ordinary let-bindings. The new inter-
face will introduce era parameters for all signal types.
An era parameter denotes (at compile time) the time
slice during which the signal is active. Using era pa-
rameters, we can prevent signals from being started at
different times. This is useful since otherwise a signal’s
behavior could depend on the starting time, leading to
different behaviors of the same signal.
Grapefruit programs always cover the complete life-

times of the systems in question. The developer is freed
from dealing with technical details like object creation
and event handler registration. This is in line with
the declarative nature of Haskell, because it stresses
the behavior of systems instead of how this behavior
is achieved. On the other hand, we try hard to offer
efficient execution of systems implemented with Grape-
fruit.
Grapefruit is currently based on Gtk2Hs (→ 5.11.1)

and HOpenGL, but implementations on top of other
GUI and graphics libraries are possible. The aim is
to provide alternative implementations based on other
GUI toolkits, so that a single application is able to inte-
grate into multiple desktop environments. Concretely,
we plan to offer an HQK (→ 5.11.2) GUI backend for
Grapefruit.

Further reading

http://haskell.org/haskellwiki/Grapefruit

6.5.2 Reactive

Report by: Conal Elliott
Status: active development

Reactive is a simple foundation for functional reac-
tive programming (FRP), including continuous, time-
varying behaviors and compositional functional events.
Some unusual features, relative to earlier FRP formu-
lations and implementations:

◦ Much of the original interface is replaced by instances
of standard type classes. In most cases, the deno-
tational semantics of these instances is simple and
inevitable, following from the principle of type class
morphisms.

◦ The original idea of reactive behaviors is composed
out of two simple notions:
– Reactive values are temporally discrete and re-

active. They have a purely data representation,
and hence cache for free.

– Time functions are temporally continuous and
non-reactive.

◦ Reactive provides and builds on functional futures,
which are time/value pairs with several handy type
class instances. Futures allow one to conveniently
compute with values before they can be known, with

62

http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://sdfmetz.googlecode.com
http://sdfmetz.googlecode.com
http://haskell.org/haskellwiki/Grapefruit

a simple, purely functional semantics (no IO). Fu-
tures are polymorphic over both values and time,
requiring only that time is ordered.

◦ A particularly useful type of time, based on Warren
Burton’s “improving values”, reveals partial informa-
tion in the form of lower bounds and minima, before
the times can be known precisely. (Semantically non-
flat.)

◦ Improving values are implemented on top of a seman-
tically simple “unambiguous choice” operator, (see
unamb (→ 5.3.7)).

◦ Reactive manages (I hope) to get the efficiency of
data-driven computation with a (sort-of) demand-
driven architecture. For that reason, Reactive is
garbage-collector-friendly.

For the past few months, this work has been gra-
ciously supported by Anygma.

Further reading

http://haskell.org/haskellwiki/Reactive

6.5.3 Functional Hybrid Modeling

Report by: George Giorgidze
Status: Experimental

Under Henrik Nilsson’s supervision I am working on a
Functional Hybrid Modeling (FHM) project. The goal
of the project is to design and implement a new lan-
guage for non-causal, hybrid modeling and simulation
of physical systems.
Causal modeling languages are closely related to syn-

chronous data-flow languages. They model system be-
havior using ordinary differential equations (ODEs) in
explicit form. That is, cause-effect relationship be-
tween variables (which are computed from which) must
be explicitly specified by the modeler. In contrast,
non-causal languages model system behavior using dif-
ferential algebraic equations (DAEs) in implicit form,
without specifying their causality. Inferring causality
from usage context for simulation purposes is left to the
compiler. The fact that the causality can be left im-
plicit makes modeling in a non-causal language more
declarative (the focus is on expressing the equations
in a natural way, not on how to express them to en-
able simulation) and also makes the models much more
reusable.
FHM is an approach to modeling which combines

functional programming and non-causal modeling with
the aim to improve state of the art of non-causal mod-
eling languages. In particular, the FHM approach pro-
poses modeling with first class model fragments (de-
fined by continuous DAEs) using combinators for their
composition and discrete switching. The key concepts

of FHM originate from work on Functional Reactive
Programming (FRP).
We are implementing Hydra, an FHM language, as a

domain-specific language embedded in Haskell. The
method of embedding employs quasiquoting, a new
feature introduced in GHC 6.10, and enables model-
ers to use the domain specific syntax in their models.
The present prototype implementation of Hydra en-
ables modeling with first class model fragments, but
only supports continuous systems. Implementing dis-
crete switching combinators to enable hybrid modeling
will be the next major step. The cabalized source code
of the prototype is publicly available on-line under the
open source BSD license.

Further reading

The source code and related papers, are available from
my homepage.

6.6 Audio and Graphics

6.6.1 Audio signal processing

Report by: Henning Thielemann
Status: experimental, active development

In this project, audio signals are processed using pure
Haskell code and the Numeric Prelude framework (→
5.6.3). The highlights are:

◦ a basic signal synthesis backend for Haskore (→
5.13.2),

◦ experimental structures for filter networks,

◦ basic audio signal processing, including some hard-
coded frequency filters,

◦ support for physical units, that is, the plain data
can be stored in a very simple number format, even
fixed point numbers, but the sampling parameters
rate and amplitude can be complex types, like num-
bers with physical units,

◦ unlike other software synthesizer packages, there are
not two global rates, namely control and audio rate.
Instead there can be many different rates, and a sig-
nal processor can have different control and audio
rate, in which case the internal processor control pa-
rameters are interpolated.

◦ frameworks for inference of sample rate and ampli-
tude, that is, sampling rate and amplitude can be
omitted in most parts of a signal processing expres-
sion. They are inferred automatically, just as types
are inferred in Haskell’s type system. We tried hard
to preserve the functional style of programming and
do not need Arrows and according notation.

63

http://haskell.org/haskellwiki/Reactive
http://www.cs.nott.ac.uk/~nhn/
http://www.cs.nott.ac.uk/~ggg/
http://www.cs.nott.ac.uk/~ggg/

◦ We checked several low-level implementations in or-
der to achieve reasonable speed. The standard list
data structure is very convenient for programming,
and especially the element-wise laziness allows for a
range of very elegant implementations, but it is much
too slow for signal processing. We complement this
structure with a lazy StorableVector structure and
a StateT s Maybe a generator.

◦ support for causal processes. Causal signal processes
only depend on current and past data and thus are
suitable for real-time processing (in contrast to a
function like time reversal). These processes are
modeled as mapAccumL like functions. Many impor-
tant operations like function composition maintain
the causality property. They are important in feed-
back loops where they statically warrant that no fu-
ture data is accessed.

Further reading

◦ http://www.haskell.org/haskellwiki/Synthesizer
◦ http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf

6.6.2 hsProcMusic

Report by: Stephen Lavelle
Status: Work ongoing

A collection of several different music-related Haskell
programs, designed chiefly as compositional tools,
rather than as music-generation tools. Most of the pro-
grams are, unfortunately, not very well documented.
However, I would certainly welcome and respond to
any requests to explain any of the code.

◦ Generate a 2-part melodic canon from a motivic seed.
It implements a toy-version of first species counter-
point to generate canonical material.

◦ Analyze sets of melodies and produce candidates
submelodies (including, optionally, slightly altered
submelodies) for prospective polyphonic combina-
tion. This is related to a currently unrealized pro-
gram to investigate cohomological aspects of coun-
terpoint.

◦ Consonance-preserving map generator. Given two
collections of pitch-classes, this program (with some
harmonic assumptions) can generate all transforma-
tions from one to another that preserve relative con-
sonance.

◦ A toy chord-progression generator based around Ler-
dahl’s Generative Theory of Tonal Music. This is
currently in active development, and I’m aiming to
bulk out its harmonic capabilities over the following
months.

The source code can be downloaded from my website.

Further reading

http://www.maths.tcd.ie/~icecube/tag/hsprocmusic/

6.6.3 Glome

Report by: Jim Snow
Status: experimental

Glome is a rendering engine for 3-D graphics, based
on ray tracing. It was originally written in OCaml,
but has since been ported (except for a few features)
to Haskell, and most future development is likely to
happen in Haskell.
It supports shadows and reflections, and base primi-

tives include triangles, disks, boxes, cylinders, cones,
spheres, boxes, and planes. More complex primi-
tives can be made by grouping primitives, taking the
Boolean difference or intersection of primitives, or by
making transformed instances.
Input and output capabilities are limited. Input is

accepted as NFF-format files, or scenes may also be
hard-coded in Haskell. Output is via an OpenGL win-
dow.
Rendering speed is reasonably fast, but a little too

slow for interactive graphics. Glome uses a Bound-
ing Interval Hierarchy internally to reduce the number
of ray-intersection tests, so that, in general, rendering
time increases logarithmically with scene complexity
rather than linearly.

Further reading

http://syn.cs.pdx.edu/~jsnow/glome/

6.6.4 easyVision

Report by: Alberto Ruiz
Status: experimental, active development

The easyVision project is a collection of libraries for
computer vision and image processing. The goal is
to write simple applications in an elegant, functional
style, supported by optimized libraries for the low level
expensive computations (Intel’s IPP, HOpenGL, hma-
trix (→ 5.3.5), MPlayer, etc.).
Recent developments include an improved parser for

automatic IPP wrapper generation, some preliminary
work on scale-invariant interest point detectors, de-
tailed installation instructions, and the first sections
of the tutorial.

Further reading

http://www.easyVision.googlepages.com

64

http://www.haskell.org/haskellwiki/Synthesizer
http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf
http://www.maths.tcd.ie/~icecube/tag/hsprocmusic/
http://syn.cs.pdx.edu/~jsnow/glome/
http://www.easyVision.googlepages.com

6.6.5 photoname

Report by: Dino Morelli
Status: stable, maintained

photoname is a command-line utility for renam-
ing/moving photo image files. The new folder location
and naming are determined by the EXIF photo shoot
date and the usually-camera-assigned serial number, of-
ten appearing in the filename.
Between versions 2.0 and 2.1 the software is largely

the same on the outside but has undergone extensive
changes inside. Most of this involved redesign with
monad transformers.
photoname is on Hackage and can be acquired using

darcs or other methods. See the project page below for
more.

Further reading

◦ Project page:
http://ui3.info/d/proj/photoname.html

◦ Source repository:
darcs get http://ui3.info/darcs/photoname

6.6.6 Simplex-Based Spatial Operations

Report by: Farid Karimipour
Participants: Andrew U. Frank
Status: active development

The project is to implement spatial operations inde-
pendent of dimension. There is much need in computa-
tional geometry and related fields to extend 2D spatial
operations to 3D and higher dimensions. Approaches
designed for a specific dimension lead to different im-
plementations for different dimensions. Following such
approaches, the code for a package that supports spa-
tial operations for both 2D and 3D cases is nearly two
times the code size for 2D. An alternative is dimen-
sion independent approaches. However, they are still
implemented separately for each dimension. The main
reason is lack of efficient data structures in the cur-
rent programming languages. This research goes one
step up the ladder of dimension independency in spa-
tial operations. It implements dimension independent
spatial operations using the concept of n-simplex. This
n-dimensional data type is defined as a list, and its
fundamental operations (e.g., dimension, orientation,
boundary, clockwise and anticlockwise tests, etc.) are
developed as higher order functions over lists, which
are treated efficiently in functional programming lan-
guages. Some spatial operations (e.g., distance and
convex hull computations) have been implemented as
case studies. A graphical user interface written with
wxHaskell functions has been developed to illustrate
the graphical results. The following figure shows the
results of the convex hull computation for some 2D and
3D points.

Further reading

◦ F. Karimipour, M.R. Delavar, and A.U. Frank. A
Mathematical Tool to Extend 2D Spatial Opera-
tions to Higher Dimensions, Proceedings of the In-
ternational Conference on Computational Science
and Its Applications (ICCSA 2008), (O. Gervasi, B.
Murgante, A. Lagan, D. Taniar, Y. Mun, and M.
Gavrilova, eds.), Perugia, Italy, June 30 – July 3,
2008, Lecture Notes in Computer Science, Berlin:
Springer, Vol. 5072, pp. 153–164.

◦ F. Karimipour, A.U. Frank, and M.R. Delavar. An
Operation-Independent Approach to Extend 2D Spa-
tial Operations to 3D and Moving Objects, Proceed-
ings of the 16th ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems (ACM GIS 2008), Irvine, CA, USA, Novem-
ber 5–7, 2008.

6.7 Proof Assistants and Reasoning

6.7.1 Galculator

Report by: Paulo Silva
Status: unstable, work in progress

The Galculator is a prototype of a proof assistant based
on the algebra of Galois connections. When combined
with the pointfree transform and tactics such as the
indirect equality principle, Galois connections offer a
very powerful, generic device to tackle the complexity
of proofs. The implementation of Galculator strongly
relies on Generalized Algebraic Data Types (GADTs)
which are used in the definition of small Domain Spe-
cific Languages. Moreover, they are also used to build
an explicit type representation, allowing for a restricted
form of dependent type programming.
The prototype of Galculator is being developed un-

der an ongoing PhD project. It is still experimental
and things tend to change quickly. Since the last re-
port, variables ranging over the universe of types were
added to the type representation; a unification mech-
anism was also defined. This allows us to represent
polymorphic proof-objects and having a type inference
system to automatically infer their type representa-

65

http://ui3.info/d/proj/photoname.html
http://ui3.info/darcs/photoname

tions. The details can be found in an article published
in PPDP’08.
The source code is available from a public SVN reposi-

tory accessible from the project homepage. After reach-
ing a stable version it will also be available from Hack-
age.
Currently, we are working on the automatic deriva-

tion of the so-called “free-theorems” of polymorphic
functions (→ 3.3.2) and their application to proofs.
Moreover, more complex constructions of Galois con-
nections are also being studied. Finally, we plan to in-
tegrate the Galculator with a theorem prover, namely
Coq.

Further reading

http://www.di.uminho.pt/research/galculator

6.7.2 funsat: DPLL-style Satisfiability Solver

Report by: Denis Bueno
Status: First release imminent, repository available

funsat (mnemonic: functional SAT solver) is a mod-
ern satisfiability solver in Haskell, intended to be com-
petitive with state-of-the-art solvers (which are mostly
written in C/C++). The strategy is to draw on many
ideas from the literature and implement them in a way
that is functional, testable, and difficult to accomplish
concisely in a lower-level language. Currently the em-
phasis is on techniques for solving structured, rather
than randomized, instances.
Funsat can solve many structured instances from

satlib (http://www.cs.ubc.ca/~hoos/SATLIB/benchm.
html) including PARITY (16 series), BF, blocksworld,
and logistics. Many are solved in a few seconds.

Further reading

The code in its current state is available as a git repos-
itory:
$ git clone http://churn.ath.cx/funsat

6.7.3 sat-micro-hs: SAT-Micro in Haskell

Report by: Denis Bueno
Status: Version 0.1.1

Sat-micro-hs is a Haskell port of the OCaml satisfiabil-
ity (SAT) solver described in “SAT-Micro: petit mais
costaud!” (“SAT-Micro: small but strong!”, see be-
low). The paper describes a minimal solver with the
flavor of a modern SAT solver, without the robustness
necessary for solving hard SAT instances. This port is
intended for those interested in SAT generally, as well
as any interested in the paper specifically, but who do
not read French.
The code is available from Hackage at

http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/sat-micro-hs.

Further reading

Sylvain Conchon, Johannes Kanig, and Stéphane
Lescuyer. “SAT-Micro: petit mais costaud!”
In Dix-neuvièmes Journées Francophones des Lan-
gages Applicatifs, Étretat, France, 2008. INRIA.
Available online at http://www.lri.fr/~conchon/publis/
conchon-jfla08.ps.

6.7.4 Saoithín: a 2nd-order proof assistant

Report by: Andrew Butterfield
Status: ongoing

Saoithín (pronounced “Swee-heen”) is a GUI-based
2nd-order predicate logic proof assistant. The motiva-
tion for its development is the author’s need for support
in doing proofs within the so-called “Unifying Theo-
ries of Programming” paradigm (UTP). This requires
support for 2nd-order logic, equational reasoning, and
meets a desire to avoid re-encoding the theorems into
some different logical form. It also provides proof tran-
scripts whose style makes it easier to check their cor-
rectness.
Saothín is implemented in GHC 6.4 and wxHaskell

0.9.4, with elements of Mark Utting’s jaza tool for
Z, and has been tested on a range of Windows plat-
forms (98/XP/Vista), and should work in principle on
Linux/Mac OS X.
Work has been slow, but help from a summer stu-

dent intern got the infrastructure for parsing from, and
pretty-printing to LATEX up and going. This will al-
low complete theories to be entered using LATEX, and
pretty-printing of the resulting proofs. A first public
release of the software in some form is now hoped for
in early 2009.

Further reading

https://www.cs.tcd.ie/Andrew.Butterfield/Saoithin

6.7.5 Inference Services for Hybrid Logics

Report by: Guillaume Hoffmann
Participants: Carlos Areces, Daniel Gorin

“Hybrid Logic” is a loose term covering a number of
logical systems living somewhere between modal and
classical logic. For more information on this languages,
see http://hylo.loria.fr
The Talaris group at Loria, Nancy, France (http:

//talaris.loria.fr) and the GLyC group at the Computer
Science Department of the University of Buenos Aires,
Argentina (http://www.glyc.dc.uba.ar/) are developing
a suite of tools for automated reasoning for hybrid
logics, available at http://code.google.com/p/intohylo/.
Most of them are (successfully) written in Haskell. See
HyLoRes (→ 6.7.6), HTab (→ 6.7.7), and HGen (→
6.7.8).

66

http://www.di.uminho.pt/research/galculator
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://churn.ath.cx/funsat
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/sat-micro-hs
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/sat-micro-hs
http://www.lri.fr/~conchon/publis/conchon-jfla08.ps
http://www.lri.fr/~conchon/publis/conchon-jfla08.ps
https://www.cs.tcd.ie/Andrew.Butterfield/Saoithin
http://hylo.loria.fr
http://talaris.loria.fr
http://talaris.loria.fr
http://www.glyc.dc.uba.ar/
http://code.google.com/p/intohylo/

6.7.6 HyLoRes

Report by: Guillaume Hoffmann
Participants: Carlos Areces, Daniel Gorin
Status: active development
Current release: 2.4

HyLoRes is an automated theorem prover for hybrid
logics (→ 6.7.5) based on a resolution calculus. It is
sound and complete for a very expressive (but unde-
cidable) hybrid logic, and it implements termination
strategies for certain important decidable fragments.
The project started in 2002, and has been evolving
since then. It is currently being extended to handle
even more expressive logics (including, in particular,
temporal logics). We have very recently added support
for model-generation for satisfiable formulas.
The source code is available. It is distributed under

the terms of the Gnu GPL.

Further reading

◦ Areces, C. and Gorin, D. Ordered Resolution with
Selection for H(@). In Proceedings of LPAR 2004,
pp. 125–141, Springer, Montevideo, Uruguay, 2005.

◦ Areces, C. and Heguiabehere, J. HyLoRes: A Hybrid
Logic Prover Based on Direct Resolution. In Pro-
ceedings of Advances in Modal Logic 2002, Toulouse,
France, 2002.

◦ Site and source:
http://code.google.com/p/intohylo/

6.7.7 HTab

Report by: Guillaume Hoffmann
Participants: Carlos Areces, Daniel Gorin
Status: active development
Current release: 1.3.5

HTab is an automated theorem prover for hybrid log-
ics (→ 6.7.5) based on a tableau calculus. It implements
a terminating tableau algorithm for the basic hybrid
logic extended with the universal modality.
The source code is available. It is distributed under

the terms of the Gnu GPL.

Further reading

◦ Hoffmann, G. and Areces, C. HTab: a terminat-
ing tableaux system for hybrid logic. In Methods for
Modalities 5, Cachan, France, 2007.

◦ Site and source:
http://code.google.com/p/intohylo/

6.7.8 HGen

Report by: Guillaume Hoffmann
Participants: Carlos Areces, Daniel Gorin
Status: active development
Current release: 1.1

HGen is a random CNF (conjunctive normal form)
generator of formulas for different hybrid logics. It is
highly parameterized to obtain tests of different com-
plexity for the different languages. It has been exten-
sively used in the development of HyLoRes (→ 6.7.6)
and HTab (→ 6.7.7).
The source code is available. It is distributed under

the terms of the Gnu GPL.

Further reading

◦ Areces, C. and Heguiabehere, J. hGen: A Random
CNF Formula Generator for Hybrid Languages. In
Methods for Modalities 3 (M4M-3), Nancy, France,
September 2003.

◦ Site and source:
http://code.google.com/p/intohylo/

6.7.9 Sparkle

Report by: Maarten de Mol
Participants: Marko van Eekelen, Rinus Plasmeĳer
Status: stable, maintained

Sparkle is an LCF-style proof assistant dedicated to
reasoning about lazy functional programs. It oper-
ates on a simplified subset of Clean (→ 3.2.3), and it
makes use of the Clean compiler to automatically trans-
late Clean programs to its accepted subset. Sparkle
fully supports the semantics of a lazy functional pro-
gramming language, including lazy evaluation, bottom-
values, and manual strictness. The reasoning steps of
Sparkle are tailored towards functional programmers,
and include both modified ones (such as Reduce and
Induction) and unique ones (such as Definedness).
Sparkle is a stand-alone application, written in Clean

and with an extensive graphical user interface written
in Object I/O. It is only available on Windows plat-
forms.

Further reading

http://www.cs.ru.nl/~Sparkle

6.8 Modeling and Analysis

6.8.1 Coconut

Report by: Wolfram Kahl
Participants: Christopher K. Anand
Status: on-going development

Coconut (COde CONstructing User Tool) is a special-
purpose compiler project aiming to provide a coherent

67

http://code.google.com/p/intohylo/
http://code.google.com/p/intohylo/
http://code.google.com/p/intohylo/
http://www.cs.ru.nl/~Sparkle

tool bench for the development of high-performance,
high-assurance scientific computation, and to cover the
full range of development activity from mathematical
modeling to verification.
Development of the integrated tool bench is in
(GHC-)Haskell, and currently proceeding from the bot-
tom up. As code generation target, we are for now
focusing on support for the Cell BE, and in particu-
lar the special-purpose SPU compute engines of which
there are eight on a single Cell BE chip.
A type-indexed embedded DSL for declarative as-

sembly language includes complex SIMD-ization pat-
terns which are easier to encapsulate in the DSL and
apply across 30 functions than they would be to im-
plement even for a single function in C. To support
rapid prototyping, Coconut includes instruction seman-
tics sufficient to simulate SIMD instruction execution
within Haskell. This significantly reduces the time
spent on developing new patterns and exploring edge
cases for mixed fixed/floating point computations by
debugging and unit testing right in GHCi.
The central internal representation are “code

graphs”, which are used to represent both data-flow
graphs and control flow graphs, with separate levels of
nesting for non-concurrent and concurrent control flow.
For scheduling simple loop bodies programmed in the
DSL, we use our Explicitly Staged Software Pipelining
(ExSSP) algorithm on the data-flow code graph repre-
sentation.
Our implementation of single-precision special func-
tions (sin, sinh, asin, . . ., sqrt, cbrt, exp, log, lgamma,
. . .) for the SPU is distributed as MASS in the Cell BE
SDK 3.0 in both generated C (for inlining) and long
vector functions scheduled by Coconut. In comparison
with a state-of-the-art hand-tuned C implementation
of these library functions using in-line assembly in the
form of intrinsic functions and scheduled by the com-
piler spu-xlc, the Coconut-generated and -scheduled
implementations are roughly four times faster; in many
cases we know that our implementations are optimal.
We are currently making good progress on novel con-
trol flow patterns and scheduling algorithms to support
them, a virtual machine model for multicore architec-
tures, and verification strategies for SIMD-ization and
multicore synchronization, in an effort to bring the level
of usability we have achieved with the DSL for SIMD-
ization also to multicore parallelism.

Further reading

http://coconut.mcmaster.ca/

6.8.2 Streaming Component Combinators

Report by: Blažević Mario
Status: Experimental, actively developed

Streaming Component Combinators are an experiment
at modeling dataflow architecture by using composable
streaming components. All components are categorized
into a small set of component types. A number of
components can be composed into a compound com-
ponent using a component combinator. For example,
two transducer components can be composed together
using a pipe operator into another transducer; one split-
ter and two transducers can be composed using an if
combinator into a single compound transducer. Com-
ponents are implemented as coroutines, and the data
flow among them is synchronous.
There are two ways to use SCC: as an embedded

language in Haskell, or as a set of commands in a
command-line shell. The latter provides its own parser
and type checker, but otherwise relies on the former to
do the real work.
The original work was done in the OmniMark pro-

gramming language. Haskell was the language of
choice for the second implementation because its strong
typing automatically makes the embedded language
strongly typed, and because its purity forces the im-
plementation to expose the underlying semantics.
The currently planned future work includes extend-

ing the set of primitive components and component
combinators and improving their performance and the
scripting abilities of the shell interface.
The latest stable version of SCC is available from

Hackage.

Further reading

◦ Hackage: http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/scc-0.2

◦ Conference paper: Mario Blažević, Stream-
ing component combinators, Extreme Markup
Languages, 2006. http://www.idealliance.org/
papers/extreme/proceedings/html/2006/Blazevic01/
EML2006Blazevic01.html

◦ OmniMark implementation: http:
//developers.omnimark.com/etcetera/
streaming-component-combinators.tar.gz

6.8.3 Raskell

Report by: Nicolas Frisby
Participants: Garrin Kimmell, Mark Snyder, Philip

Weaver, Perry Alexander
Status: beta, actively developed

Raskell is a Haskell-based analysis and interpreta-
tion environment for specifications written using the
system-level design language Rosetta. The goal of
Rosetta is to compose heterogeneous specifications into

68

http://coconut.mcmaster.ca/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/scc-0.2
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/scc-0.2
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html
http://developers.omnimark.com/etcetera/streaming-component-combinators.tar.gz
http://developers.omnimark.com/etcetera/streaming-component-combinators.tar.gz
http://developers.omnimark.com/etcetera/streaming-component-combinators.tar.gz

a single semantic environment. Rosetta provides mod-
eling support for different design domains employing se-
mantics and syntax appropriate for each. Therefore, in-
dividual specifications are written using semantics and
vocabulary appropriate for their domains. Information
is then composed across these domains by defining in-
teractions between them.
The heart of Raskell is a collection of composable

interpreters that support type checking, evaluation,
and abstract interpretation of Rosetta specifications.
Algebra combinators allow semantic algebras for the
same constructs, but for different semantics, to be
easily combined. This facilitates further reuse of se-
mantic definitions. Using abstract interpretation, we
can transform specifications between semantic domains
without sacrificing soundness. This allows for analy-
sis of interactions between two specifications written
in different semantic domains. Raskell also includes a
Parsec-based Rosetta parser.
The Raskell environment is available for download at

the links below. It is continually being updated, so we
recommend checking back frequently for updates. To
build the Rosetta parser and type checker, you must
also install InterpreterLib (→ 5.5.6), available at the
third link listed below.

Further reading

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-rosetta.htm#raskell

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-raskell.htm

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-InterpreterLib.htm

Contact

〈alex@ittc.ku.edu〉

6.8.4 iTasks

Report by: Thomas van Noort
Participants: Rinus Plasmeĳer, Peter Achten, Pieter

Koopman, Bas Lĳnse
Status: active development

The iTask system is a set of combinators to specify
workflow in the pure and functional language Clean (→
3.2.3) at a very high level of abstraction. Workflow
systems are automated systems in which tasks are co-
ordinated that have to be executed by either humans
or computers. The combinators that are available
support workflow patterns commonly found in com-
mercial workflow systems. In addition, we introduce
novel workflow patterns that capture real world re-
quirements, but that cannot be dealt with by current
systems. For example, work can be interrupted and
subsequently directed to other workers for further pro-
cessing. Compared with contemporary workflow sys-

tems, the iTask system offers several further advan-
tages:

◦ Tasks are statically typed and can be higher-order.

◦ Combinators are fully compositional.

◦ Dynamic and recursive workflow is supported.

◦ An executable web-based multi-user workflow appli-
cation is generated from a specification.

The iTask system makes extensive use of Clean’s
generic programming facilities and its iData toolkit
with which interactive, thin-client, form-based web ap-
plications can be created.

Future plans

Currently, we are working on demand driven workflow
specifications in which a task only needs to be com-
pleted when its result is required. Furthermore, we are
looking at how changes in a specification affect a run-
ning workflow application.

Further reading

◦ http://wiki.clean.cs.ru.nl/ITasks
◦ http://www.st.cs.ru.nl/Onderzoek/Publicaties/

publicaties.html

69

http://www.ittc.ku.edu/Projects/SLDG/projects/project-rosetta.htm#raskell
http://www.ittc.ku.edu/Projects/SLDG/projects/project-rosetta.htm#raskell
http://www.ittc.ku.edu/Projects/SLDG/projects/project-raskell.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-raskell.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
mailto: alex at ittc.ku.edu
http://wiki.clean.cs.ru.nl/ITasks
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html

6.9 Hardware Design

6.9.1 ForSyDe

Report by: Alfonso Acosta
Participants: Ingo Sander, Axel Jantsch, Zhonghai Lu,

Tarvo Raudvere, Jun Zhu
Status: Experimental

The ForSyDe (Formal System Design) methodology
has been developed with the objective to move system-
on-chip design to a higher level of abstraction. ForSyDe
is implemented as a Haskell-embedded behavioral DSL.
We have recently released ForSyDe 3.0, which in-

cludes a new deep-embedded DSL and embedded com-
piler with different backends (Simulation, Synthesiz-
able VHDL and GraphML), as well as a new user-
friendly tutorial.
The source code, together with example system mod-

els, is available from HackageDB under the BSD3 li-
cense.

Features

ForSyDe includes two DSL flavors which offer different
features:

1. Deep-embedded DSL
Deep-embedded signals (ForSyDe.Signal), based on
the same concepts as Lava (→ 6.9.2), are aware of the
system structure. Based on that structural informa-
tion ForSyDe’s embedded compiler can perform dif-
ferent analysis and transformations.

◦ Thanks to Template Haskell, computations are
expressed in Haskell, not needing to specifically
design a DSL for that purpose.

◦ Embedded compiler backends:
– Simulation
– VHDL (with support for Modelsim and

Quartus II)
– GraphML (with yFiles graphical markup

support.)
◦ Synchronous model of computation.
◦ Support for components.
◦ Support for fixed-sized vectors.

2. Shallow-embedded DSL
Shallow-embedded signals
(ForSyDe.Shallow.Signal) are modeled as streams
of data isomorphic to lists. Systems built with them
are restricted to simulation. However, shallow-
embedded signals provide a rapid-prototyping
framework which allows to experiment with hetero-
geneous models of computation (MoCs).
◦ Synchronous MoC.
◦ Untimed MoC.

◦ Continuous Time MoC.
◦ Domain Interfaces allow connecting various

subsystems with different timing (domains) re-
gardless of their MoC.

ForSyDe allows to integrate deep-embedded models
into shallow-embedded ones. This makes it possible
to simulate a synthesizable deep-embedded model to-
gether with its environment, which may consist of ana-
log, digital, and software parts. Once the functional-
ity of the deep-embedded model is validated, it can be
synthesized to hardware using the VHDL-backend of
ForSyDe’s embedded compiler.

Further reading

http://www.ict.kth.se/org/ict/ecs/sam/projects/
forsyde/www/

6.9.2 Lava

Report by: Emil Axelsson
Participants: Koen Claessen, Mary Sheeran, Satnam

Singh

Lava is a hardware description library embedded in
Haskell. By modeling hardware components as func-
tions from inputs to outputs, Lava allows struc-
tural hardware description using standard functional
programming techniques. The version developed
at Chalmers University (http://www.cs.chalmers.se/
~koen/Lava/) has a particular aim to support formal
verification in a convenient way. The version devel-
oped at Xilinx Inc. (http://raintown.org/lava/) focuses
on FPGA core generation, and has been successfully
used in real industrial design projects.
Some recent Lava-related work at Chalmers is Mary

Sheeran’s parallel prefix generators, which use a clever
search to find networks with a good balance between
speed and low power. The most visible activity on Lava
itself over the last years is that the Chalmers version
has been made available from Hackage.

Further reading

http://www.cs.chalmers.se/~koen/Lava/

6.9.3 Wired

Report by: Emil Axelsson
Participants: Koen Claessen, Mary Sheeran

Wired is an extension to the hardware description li-
brary Lava (→ 6.9.2), targeting (not exclusively) semi-
custom VLSI design. A particular aim of Wired is to
give the designer more control over the routing wires’
effects on performance.
The goal is a system with the following features:

1. Convenient circuit description in monadic style.

70

http://www.ict.kth.se/org/ict/ecs/sam/projects/forsyde/www/
http://www.ict.kth.se/org/ict/ecs/sam/projects/forsyde/www/
http://www.cs.chalmers.se/~koen/Lava/
http://www.cs.chalmers.se/~koen/Lava/
http://raintown.org/lava/
http://www.cs.chalmers.se/~koen/Lava/

2. Layout/wiring expressed using optional annota-
tions, allowing incremental specification of physical
aspects.

3. Export designs to several formats:
◦ Lava (for, e.g., verification)
◦ Postscript (visualizing layout and wiring)
◦ Design Exchange Format (interface to standard
CAD tools for, e.g., fabrication)

4. Accurate, wire-aware timing/power analysis within
the system.

5. Support for a few modern cell libraries.

6. Automatic modeling of cell libraries.

We are not very far from this goal. The missing parts
are power analysis and support for cell libraries.
Wired is still quite unstable and has not been tested

in any larger scale. Realistic testing requires sup-
port for realistic cell libraries, something which we are
actively working on. The upcoming release will be
shipped with the free Nangate 45nm Open Cell Library
(http://www.nangate.com), allowing users to play with
a cutting-edge VLSI technology without the need for
any expensive and complicated CAD tools.

Further reading

http://www.cs.chalmers.se/~emax/wired/

6.9.4 Oread

Report by: Garrin Kimmell
Participants: Ed Komp, Perry Alexander
Status: beta, actively developed

The Computer Systems Design Lab is investigating
the use of functional languages in the development of
mixed-fabric (hardware and software) embedded sys-
tems. To this end, we have developed a language,
Oread, and an accompanying toolset, implemented
in Haskell. Oread is a strict functional language,
combined with monadic message-passing architecture,
which allows a system to be compiled to both tradi-
tional CPU instruction sets and FPGA hardware. The
principal application target for Oread programs is the
construction of software-defined radio components.
Oread is available for download at the link provided

below. Version 0.1 of Oread was released in November
2008.

Further reading

http://www.ittc.ku.edu/Projects/SLDG/projects/
project-Oread.htm

Contact

〈kimmell@ittc.ku.edu〉

6.10 Natural Language Processing

6.10.1 GenI

Report by: Eric Kow

GenI is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen as the last stage in a nat-
ural language generation pipeline. GenI in particular
takes an FB-LTAG grammar and an input semantics
(a conjunction of first order terms), and produces the
set of sentences associated to the input semantics by
the grammar. It features a surface realization library,
several optimizations, batch generation mode, and a
graphical debugger written in wxHaskell. It was devel-
oped within the TALARIS project and is free software
licensed under the GNU GPL.
GenI is available on Hackage, and can be installed

via cabal-install. We also have a mailing list at http:
//websympa.loria.fr/wwsympa/info/geni-users.

Further reading

◦ http://trac.loria.fr/~geni
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en

6.10.2 Grammatical Framework

Report by: Krasimir Angelov
Participants: Aarne Ranta, Björn Bringert, Håkan

Burden

Grammatical Framework (GF) is a programming lan-
guage for multilingual grammar applications. It can
be used as a more powerful alternative to Happy but
in fact its main usage is to describe natural language
grammars instead of for programming languages. The
language itself will look familiar for most Haskell or
ML users. It is a dependently typed functional lan-
guage based on Per Martin-Löf’s type theory.
An important objective in the language development

was to make it possible to develop modular gram-
mars. The language provides modular system inspired
from ML but adapted to the specific requirements in
GF. The modules system was exploited to a large ex-
tent in the Resource Libraries project. The library
provides large linguistically motivated grammars for a
number of languages. When the languages are closely
related the common parts in the grammar could be
shared using the modules system. Currently there
are complete grammars for Bulgarian, Danish, English,

71

http://www.nangate.com
http://www.cs.chalmers.se/~emax/wired/
http://www.ittc.ku.edu/Projects/SLDG/projects/project-Oread.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-Oread.htm
mailto: kimmell at ittc.ku.edu
http://websympa.loria.fr/wwsympa/info/geni-users
http://websympa.loria.fr/wwsympa/info/geni-users
http://trac.loria.fr/~geni
http://hal.inria.fr/inria-00088787/en

Finnish, French, German, Interlingua, Italian, Norwe-
gian, Russian, Spanish, and Swedish. Some still in-
complete grammars are available for Arabic, Catalan,
Latin, Thai, and Hindi/Urdu. On top of these gram-
mars a user with limited linguistic background can
build application grammars for a particular domain.
In June 2008 a beta version of GF 3.0 was released.

This is a major refactoring of the existing system. The
code base is about half in size and makes a clear separa-
tion between compiler and runtime system. A Haskell
library is provided that allows GF grammars to be
easily embedded in the user applications. There is a
translator that generates JavaScript code which allows
the grammar to be used in web applications as well.
The new release also provides new parser algorithm
which works faster and is incremental. The incremen-
tality allows the parser to be used for word prediction,
i.e., someone could imagine a development environment
where the programming language is natural language
and the user still can press some key to see the list of
words allowed in this position just like it is possible in
Eclipse, JBuilder, etc.

Further reading

www.digitalgrammars.com/gf

6.11 Inductive Programming

6.11.1 Inductive Programming

Report by: Lloyd Allison

Inductive Programming (IP): The learning of general
hypotheses from given data.
The project is (i) to use Haskell to examine what

are the products of artificial-intelligence (AI)/data
mining/machine-learning from a programming point of
view, and (ii) to do data analysis with them.
IP 1.2 now contains estimators, from given weighted

and unweighted data, to the Poisson and Geometric
distributions over non-negative integer variables, and
Student’s t-Distribution over continuous variables. The
new (and the earlier) distributions may be used as com-
ponents to the learners (estimators) of structured mod-
els such as unsupervised classifications (mixture mod-
els), classification- (decision-, regression-) trees and
other function-models (regressions), mixed Bayesian
networks, and segmentation models. A small prototype
module of numerical/scientific functions, in Haskell,
has been added to IP 1.2, to support the implemen-
tation of Student’s t-Distribution in the first instance.
I am working on some routines for the analysis of la-

beled graphs (networks), and on reorganizing the mod-
ules slightly to suit Haskell’s module system better.
Prototype code is available (GPL) at the URL below.

Future plans

Planned are continuing extensions, applications to real
data-sets, and comparisons against other learners.

Further reading

◦ http://www.allisons.org/ll/FP/IP/
◦ http://www.csse.monash.edu.au/~lloyd/tildeFP/II/

6.11.2 IgorII

Report by: Martin Hofmann
Participants: Emanuel Kitzelmann, Ute Schmid
Status: experimental, active development

IgorII is a new method and an implemented prototype
for constructing recursive functional programs from a
few non-recursive, possibly non-ground, example equa-
tions describing a subset of the input/output behavior
of a target function to be implemented.
For a simple target function like reverse the sole

input would be the following, the k smallest w.r.t. the
input data type, examples:

reverse [] = []
reverse [a] = [a]
reverse [a,b] = [b,a]
reverse [a,b,c] = [c,b,a]

The result, shown below, computed by IgorII is a
recursive definition of reverse, where the subfunctions
last and init have been automatically invented by the
program.

reverse [] = []
reverse (x:xs) = (last (x:xs)):(reverse (init (x:xs))

last [x] = x
last (x:y:ys) = last (y:ys)
init [x] = []
init (x:y:ys) = x:(init (y:ys))

Features

◦ termination by construction

◦ handling arbitrary user-defined data types

◦ utilization of arbitrary background knowledge

◦ automatic invention of auxiliary functions as subpro-
grams

◦ learning complex calling relationships (tree- and
nested recursion)

◦ allowing for variables in the example equations

◦ simultaneous induction of mutually recursive target
functions

72

www.digitalgrammars.com/gf
http://www.allisons.org/ll/FP/IP/
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/

Current Status and Future Plans

IgorII is currently still implemented in the reflective
rewriting based programming and specification lan-
guage Maude, and is available on the project page.
However, it will be ported to Haskell soon.
For the future, an extension to higher-order context

is planned, as well as the introduction of further func-
tional constructs (e.g., let) and accumulator variables.

Further reading

◦ http://www.cogsys.wiai.uni-bamberg.de/effalip/
◦ http://www.inductive-programming.org/

6.12 Others

6.12.1 Bioinformatics tools

Report by: Ketil Malde

The Haskell bioinformatics library supports working
with nucleotide and protein sequences and associated
data. File format support includes sequences in Fasta
(with associated quality information), TwoBit, and
PHD formats, BLAST XML output, and ACE align-
ment files.
The standard alignment algorithms (and some non-

standard ones) are provided, as well as sequence index-
ing, complexity calculation, protein translation, etc.
The library is considered in development (meaning

things will be added, some functionality may not be as
complete or well documented as one would wish, and so
on), but central parts should be fairly well documented
and come with a QuickCheck test and benchmarking
suite.
The library abstracts functionality that is used in a

handful of applications, including:

◦ xsact — an EST clustering program

◦ RBR — a repeat detector/masker

◦ clusc — a tool for calculating cluster similarity with
a bunch of metrics

◦ dephd — a sequence quality assessment tool

◦ xml2x — a BLAST postprocessor and GO annotator

Everything is GPLed and available as Darcs repos,
at http://malde.org/~ketil/biohaskell/.

6.12.2 lambdabot

Report by: Don Stewart
Status: active development

lambdabot is an IRC robot with a plugin architecture,
and persistent state support. Plugins include a Haskell

evaluator, lambda calculus interpreter, unlambda in-
terpreter, pointfree programming, dictd client, fortune
cookies, Google search, online help, and more.
lambdabot 4.0 has been released, and is available

from Hackage. Cale Gibbard has also kindly taken over
maintenance of the bot.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/lambdabot.html

◦ The source repository is available:
darcs get http://code.haskell.org/lambdabot

6.12.3 Roguestar

Report by: Christopher Lane Hinson
Status: early development

Roguestar is a science fiction themed roguelike game
written in Haskell. Roguestar uses a client-server
model: roguestar-engine is the backend game engine,
while roguestar-gl is the OpenGL client.
Roguestar 0.2.2 was announced on 16th August 2008,

and is the first version to support Windows.
RSAGL is the RogueStar Animation and Graph-

ics Library, which was written specifically to support
roguestar-gl. Every effort has been made to make it ac-
cessible to other projects. It includes domain-specific
primitives, monads, and arrows for 3D modeling and
animation.
Roguestar is licensed under the Affero General Pub-

lic License. RSAGL is licensed under a permissive li-
cense.
In the last few months, a major subproject has been

the development of a simple fast special-purpose me-
dia ray tracer, which is being used to generate realistic
extraterrestrial sky spheres.

Further reading

◦ http://roguestar.downstairspeople.org
◦ http://blog.downstairspeople.org

6.12.4 Hpysics

Report by: Roman Cheplyaka
Status: experimental

Hpysics is a 3-D physics engine written in Haskell. It
started as a Google Summer of Code project men-
tored by Manuel Chakravarty and Roman Leshchin-
skiy. The distinctive feature of Hpysics is the use of
GHC’s Data Parallel Haskell extension to enable fast
real-time physics simulation on multi-core processors.
At the moment Hpysics supports polyhedral shapes

using VClip algorithm for narrow-phase collision detec-
tion. A simple OpenGL visualization is included.

73

http://www.cogsys.wiai.uni-bamberg.de/effalip/
http://www.inductive-programming.org/
http://malde.org/~ketil/biohaskell/
http://www.cse.unsw.edu.au/~dons/lambdabot.html
http://code.haskell.org/lambdabot
http://roguestar.downstairspeople.org
http://blog.downstairspeople.org

Potential users of the physics engine are welcome to
guide further development of the project.
The source code is available from public darcs repos-

itory under the BSD license.

Further reading

◦ http://haskell.org/haskellwiki/Hpysics
◦ An article about Hpysics is to appear in the SoC

issue of The Monad Reader.

6.12.5 hledger

Report by: Simon Michael
Participants:

hledger is a command-line accounting tool similar to
John Wiegley’s ledger tool.
The first release has been published on Hackage, and

has attracted some interest. It can be used for gener-
ating simple balance and transaction reports from a
plain-text general ledger. A home page and mail list
has also been created.
Immediate plans are to add some more of the most

useful features from c++ ledger, so that hledger can be
used for day-to-day finances, and to grow the commu-
nity of contributors.

Further reading

http://joyful.com/hledger

74

http://haskell.org/haskellwiki/Hpysics
http://joyful.com/hledger

7 Commercial Users

7.1 Well-Typed LLP

Report by: Ian Lynagh
Participants: Björn Bringert, Duncan Coutts

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a develop-
ment platform. We also offer consulting services, con-
tracting, and training. For more information, please
take a look at our website or drop us an e-mail at
〈info@well-typed.com〉.
The three of us formed the company back in March,

with a plan to take care of our existing commitments
(the GHC support contract and two PhD theses) and to
go full time around the end of the summer. Since then,
Björn has accepted a position at Google, although he
remains as a partner in an advisory role. Meanwhile,
Well-Typed has kept Ian and Duncan busy full-time for
the last couple of months, including taking over the role
of GHC support engineer. We are pleased to have been
able to play a part in getting the recent GHC 6.10.1
release out.
Looking ahead, we have many exciting prospects

on the horizon. We expect to have some interesting
announcements before the next HCAR edition. Stay
tuned!

Further reading

http://www.well-typed.com/

7.2 SeeReason Partners, LLC

Report by: Clifford Beshers
Participants: David Fox, Jeremy Shaw

Clifford Beshers, David Fox, and Jeremy Shaw com-
prise SeeReason Partners, LLC. We develop web ser-
vices using Haskell to build our applications. We are
currently using AJAX techniques, with Javascript code
generated from Haskell, deployed using HAppS as a
web server. We initially planned working with Adobe
Flash, based on early work on a Haskell to Flash com-
piler, but have postponed that work for now.
We have developed and deployed a website for cre-

ating art appraisal reports, in use by a private firm.
These documents require specific formatting that must
be more flexible than simple boilerplate, but for which
standard commercial word processing tools proved to
be too cumbersome. Multiple users can edit reports
simultaneously through a web interface using Wiki

markup, which is converted to LaTeX and rendered
in PDF format.
We are currently working towards launching Alge-

braZam.com, a site to teach mathematics skills, be-
ginning with elementary algebra. The initial launch,
expected fourth quarter 2008, will begin with an inter-
active tool for solving simple algebraic equations.
Formerly core members of the operating systems

group at Linspire, Inc., we continue to maintain the
tools for managing a Debian Linux distribution that
we developed there. Source code for these tools can be
found at our public source code repository http://src.
seereason.com/. These include a package build system
(autobuilder) as well as Cabal to Debian conversion
tool (cabal-debian). We provide current archives of
many Haskell packages (including GHC 6.8.3 built with
Haddock 2.x) built for recent versions of Debian (un-
stable) and Ubuntu (8.04 and soon 8.10.) Packages are
available at http://deb.seereason.com/. We welcome in-
quiries from developers interested in using these pack-
ages or helping out with continued development.
We can be reached at 〈(cliff,david,jeremy)@seereason.

com〉 and on #haskell (→ 1.2) respectively as thetall-
guy, dsfox, and stepcut.

7.3 Ansemond LLC

Report by: Sengan Baring-Gould

Find It! Keep It! is a Mac Web Browser that lets
you keep the pages you visit in a database. A list
of these pages is shown in the “database view”. This
view is rendered by the browser from generated HTML
and is dynamically updated by Javascript DOM oper-
ations: tens of thousands of elements cannot efficiently
be placed on the screen using DOM operations only,
while rerendering a half a megabyte of HTML each
time a user interface element changes is unresponsive.
A glitch free user experience requires keeping these two
separate mechanisms synchronized, which proved diffi-
cult.
A Haskell implementation generates abstract DOM

operations which are then either rendered to HTML or
are converted to Javascript DOM operations to be run
within the browser. While this process is not complex
(difficult algorithm) it is complicated (hard for the pro-
grammer to keep everything in mind). The additional
modularity afforded by laziness proved invaluable, en-
abling all the different pieces to be coded much more
independently and clearly than was possible in the orig-
inal Python version. This same engine could be used
on a web server and would work with any web browser.
The Haskell version is scheduled to ship in version 1.1

75

mailto: info at well-typed.com
http://www.well-typed.com/
http://src.seereason.com/
http://src.seereason.com/
http://deb.seereason.com/
mailto: (cliff,david,jeremy) at seereason.com
mailto: (cliff,david,jeremy) at seereason.com

of Find It! Keep It!

Further reading

http://www.ansemond.com

7.4 Credit Suisse Global Modeling and
Analytics Group

Report by: Ganesh Sittampalam
GMAG, the quantitative modeling group at Credit Su-
isse, has been using Haskell for various projects since
the beginning of 2006, with the twin aims of improving
the productivity of modelers and making it easier for
other people within the bank to use GMAG models.
Many of GMAG’s models use Excel combined with

C++ addin code to carry out complex numerical com-
putations and to manipulate data structures. This
combination allows modelers to combine the flexibility
of Excel with the performance of compiled code, but
there are significant drawbacks: Excel does not sup-
port higher-order functions and has a rather limited
and idiosyncratic type system. It is also extremely dif-
ficult to make reusable components out of spreadsheets
or subject them to meaningful version control.
Because Excel is (in the main) a side-effect free en-

vironment, functional programming is in many ways a
natural fit, and we have been using Haskell in various
ways to replace or augment the spreadsheet environ-
ment.
Our past projects include:

◦ Adding higher-order functions to Excel, implemented
via (Haskell) addin code.

◦ Tools to transform spreadsheets into directly exe-
cutable code.

◦ A “lint” tool to check for common errors in spread-
sheets.

Our main current project is Paradise, a domain-
specific language embedded in Haskell for implement-
ing reusable components that can be compiled into mul-
tiple target forms. It has been under development for

a long time now, and over that time the team working
on it has grown to several people.
Paradise’s first target form was Excel spreadsheets,

and that backend is now relatively mature; our main
focus at the moment is generating .NET components
which can be run standalone or plugged into a bank-
wide system. In future we may target yet more diverse
platforms such as web browsers.
Several modelers have now been exposed directly to

Haskell by using Paradise, and they have generally
picked it up fairly quickly. All new recruits are now
introduced to Haskell as part of our internal training
program.

Further reading

◦ CUFP 2006 talk about Credit Suisse:
http://cufp.galois.com/slides/2006/HowardMansell.
pdf

◦ ICFP 2008 experience report about Paradise:
http://www.earth.li/~ganesh/research/
paradise-icfp08/paper.pdf
http://www.earth.li/~ganesh/research/
paradise-icfp08/talk.pdf

7.5 Bluespec tools for design of complex
chips

Report by: Rishiyur Nikhil
Status: Commercial product

Bluespec, Inc. provides a language, BSV, which is be-
ing used for all aspects of ASIC and FPGA system de-
sign — specification, synthesis, modeling, and verifica-
tion. All hardware behavior is expressed using rewrite
rules (Guarded Atomic Actions). BSV borrows many
ideas from Haskell — algebraic types, polymorphism,
type classes (overloading), and higher-order functions.
Strong static checking extends into correct expression
of multiple clock domains, and to gated clocks for power
management. BSV is universal, accommodating the di-
verse range of blocks found in SoCs, from algorithmic
“datapath” blocks to complex control blocks such as
processors, DMAs, interconnects and caches.
Bluespec’s core tool synthesizes (compiles) BSV into

high-quality RTL (Verilog), which can be further syn-
thesized into netlists for ASICs and FPGAs using other
commercial tools. Automatic synthesis from atomic
transactions enables design-by-refinement, where an
initial executable approximate design is systematically
transformed into a quality implementation by succes-
sively adding functionality and architectural detail.
Other products include fast BSV simulation and devel-
opment tools. Bluespec also uses Haskell to implement
its tools (over 100K lines of Haskell).
This industrial strength tool has enabled some large

designs (over a million gates) and significant architec-

76

http://www.ansemond.com
http://cufp.galois.com/slides/2006/HowardMansell.pdf
http://cufp.galois.com/slides/2006/HowardMansell.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/paper.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/paper.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/talk.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/talk.pdf

ture research projects in academia and industry. This
kind of research was previously feasible only in soft-
ware simulation. BSV permits the same convenience
of expression as SW languages, and its synthesizability
further allows execution on FPGA platforms at three
orders of magnitude greater speeds, making it possible
now to study realistic scenarios.

Status and availability

BSV tools, available since 2004, are in use by several
major semiconductor companies and universities. The
tools are free for academic teaching and research.

Further reading

◦ R.S.Nikhil, Bluespec, a General-Purpose Approach
to High-Level Synthesis Based on Parallel Atomic
Transactions, in High Level Synthesis: from Algo-
rithm to Digital Circuit, Philippe Coussy and Adam
Morawiec (editors), Springer, 2008, pp. 129-146.

◦ Small illustrative examples: http://www.bluespec.
com/wiki/SmallExamples

◦ Winning entry in MEMOCODE 2008 design contest:
http://rĳndael.ece.vt.edu/memocontest08/

◦ MIT courseware, “Complex Digital Systems”: http:
//csg.csail.mit.edu/6.375

◦ A fun example with many functional-programming
features — BluDACu, a parameterized Bluespec
hardware implementation of Sudoku: http://www.
bluespec.com/products/BluDACu.htm

7.6 Galois, Inc.

Report by: Andy Adams-Moran

Galois is an employee-owned software development
company based in Beaverton, Oregon, U.S.A. Ga-
lois started in late 1999 with the stated purpose of
using functional languages to solve industrial prob-
lems. These days, we emphasize the needs of our
clients and their problem domains over the tech-
niques, and the slogan of the Commercial Users of
Functional Programming Workshop (see http://cufp.
functionalprogramming.com/) exemplifies our approach:
Functional programming as a means, not an end.
Galois develops software under contract, and every

project (bar three) that we have ever done has used
Haskell. The exceptions used ACL2, Poly-ML, SML-
NJ, and OCaml, respectively, so functional program-
ming languages and formal methods are clearly our “se-
cret sauce”. We deliver applications and tools to clients
in industry and the U.S. government. Some diverse ex-
amples: Cryptol, a domain-specific language for cryp-
tography (with an interpreter and a compiler, with mul-
tiple targets, including FPGAs); a GUI debugger for a
specialized microprocessor; a specialized, high assur-
ance, cross-domain web and file server, and wiki for

use in secure environments, and numerous smaller re-
search projects that focus on taking cutting-edge ideas
from the programming language and formal methods
community and applying them to real world problems.
Web-based technologies are increasingly important

to our clients, and we believe Haskell has a key role
to play in the production of reliable, secure web soft-
ware. The culture of correctness Haskell encourages
is ideally suited to web programming, where issues of
security, authentication, privacy, and protection of re-
sources abound. In particular, Haskell’s type system
makes possible strong static guarantees about access
to resources, critical to building reliable web applica-
tions.
To help push further the adoption of Haskell in the

domain of web programming, Galois released a suite of
Haskell libraries, including:

◦ json: Support for JavaScript Object Notation

◦ xml: A simple, lightweight XML parser/generator.

◦ utf8-string: A UTF8 layer for IO and Strings.

◦ selenium: Communicate with a Selenium Remote
Control server.

◦ curl: libcurl is a rich client-side URL transfer library.

◦ sqlite: Haskell binding to sqlite3 databases.

◦ feed: Interfacing with RSS and Atom feeds

◦ mime: Haskell support for working with MIME
types.

Continuing our deep involvement in the Haskell com-
munity, Galois was happy to sponsor the two Haskell
hackathons held in the past year, Hac 07 II, in Freiburg,
Germany, and Hac4 in Gothenburg, Sweden. Galois
also sponsored the second BarCamp Portland, held in
early May 2008.

Further reading

http://www.galois.com/.

7.7 IVU Traffic Technologies AG Rostering
Group

Report by: Michael Marte
Status: Released

The rostering group at IVU Traffic Technologies AG
has been using Haskell to check rosters for compliance
with the “EC Regulation No 561/2006 on the harmo-
nization of certain social legislation relating to road
transport” which “lays down rules on driving times,
breaks and rest periods for drivers engaged in the car-
riage of goods and passengers by road”.

77

http://www.bluespec.com/wiki/SmallExamples
http://www.bluespec.com/wiki/SmallExamples
http://rijndael.ece.vt.edu/memocontest08/
http://csg.csail.mit.edu/6.375
http://csg.csail.mit.edu/6.375
http://www.bluespec.com/products/BluDACu.htm
http://www.bluespec.com/products/BluDACu.htm
http://cufp.functionalprogramming.com/
http://cufp.functionalprogramming.com/
http://www.galois.com/

By reduction from SEQUENCING WITH RE-
LEASE TIMES AND DEADLINES (Garey & John-
son, Computers & Tractability, 1977), it is easy to show
that EC 561/2006 is NP complete due to combinatorial
rest-time compensation rules.
Our implementation is based on an embedded DSL

to combine the regulation’s single rules into a solver
that not only decides on instances but, in the case of a
faulty roster, finds an interpretation of the roster that
is “favorable” in the sense that the error messages it
entails are “helpful” in leading the dispatcher to the
resolution of the issue at hand.
Our EC 561/2006 solver comprises about 1700 lines

of Haskell code (including about 250 lines for the C
API), is compiled to a DLL with ghc, and linked dy-
namically into C++ and Java applications. The solver
is both reliable (due to strong static typing and referen-
tial transparency — we have not experienced a failure
in three years) and efficient (due to constraint propa-
gation, a custom search strategy, and lazy evaluation).
Our EC 561/2006 component is part of the IVU.crew

software suite and as such is in wide-spread use all over
Europe, both in planning and dispatch. So the next
time you enter a regional bus, chances are that the
driver’s roster was checked by Haskell.

Further reading

◦ EC 561/2006 at EurLex
◦ The IVU.suite for public transport

7.8 Tupil

Report by: Chris Eidhof
Participants: Eelco Lempsink

Tupil builds reliable web software with Haskell. Using
Haskell’s powerful ways of abstraction, we can develop
with the speed of dynamic scripting languages but with
the safety and performance of a language that is stati-
cally checked and compiled.
Because we like to give back to the community, we

have released a formlets library that is based on the
formlets by Wadler et al. Also, we have implemented
the protocol for a Sphinx client. This allows you to
do fast full-text searching using Haskell. Of course, we
plan to release more libraries in the future.

Further reading

◦ http://tupil.com
◦ http://blog.tupil.com

78

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:102:0001:01:EN:HTML
http://www.ivu.de/uk/products/public-transport/
http://tupil.com
http://blog.tupil.com

8 Research and User Groups

8.1 Functional Programming Lab at the
University of Nottingham

Report by: Liyang HU

The School of Computer Science at the University of
Nottingham has recently formed the Functional Pro-
gramming Laboratory, a new research group focused on
all theoretical and practical aspects of functional pro-
gramming, together with related topics such as type
theory, category theory, and quantum programming.
The laboratory is led jointly by Thorsten Altenkirch

and Graham Hutton, with Henrik Nilsson and Venanzio
Capretta as academic staff. With 4 more research staff
and some 10 PhD students in our group, we have a
wide spectrum of interests:

Containers

Nottingham has been home to the EPSRC grant on
containers, a semantic model of functional data struc-
tures. Thorsten Altenkirch, Peter Hancock, Peter Mor-
ris, and Rawle Prince are working with containers to
both write and reason about programs. Peter Morris
has recently finished his PhD, which used containers as
a basis for generic programming with dependent types.

Dependently Typed Programming (DTP)

Peter Morris and Nicolas Oury are working on Epi-
gram, while Nils Anders Danielsson is involved in the
development of Agda (→ 3.2.2). Our interests lie both
in the pragmatics of using DTP, as witnessed by work
on libraries and tools, and in foundational theory,
including the Observational Type Theory underlying
Epigram 2 and James Chapman’s work on normaliza-
tion. DTP is also used to control and reason about
effects, and a number of us are using Agda as a proof
assistant to verify programs or programming language
theory.

Functional Reactive Programming (FRP)

The FRP team are working on FRP-like and FRP-
inspired declarative, domain-specific languages. Under
Henrik Nilsson’s supervision, Neil Sculthorpe is work-
ing on a new, scalable FRP language based on reactive
components with multiple inputs and outputs, while
George Giorgidze is applying the advantages of FRP
to non-causal modeling with the aim of designing a
new, more expressive and flexible language for non-
causal, hybrid modeling and simulation (→ 6.5.3). Tom

Nielsen is implementing a declarative language for ex-
periments, simulations, and analysis in neuroscience.
A theme that permeates our work is implementation
through embedding in typed functional languages such
as Haskell or Agda (→ 3.2.2). The team also main-
tains Yampa, the latest Haskell-based implementation
of FRP.

Quantum Programming

Thorsten Altenkirch and Alexander S Green have been
working on the Quantum IO Monad (QIO), an inter-
face from Haskell to Quantum Programming. Tak-
ing advantage of abstractions available in Haskell we
can provide QIO implementations of many well-known
quantum algorithms, including Shor’s factorization al-
gorithm. The implementation also provides a construc-
tive semantics of quantum programming in the form of
a simulator for such QIO computations.

Reasoning About Effects

Graham Hutton and Andy Gill recently formalized
the worker/wrapper transformation for improving the
performance of functional programs. Wouter Swier-
stra and Thorsten Altenkirch have produced func-
tional specifications of the IO monad, as described in
Wouter’s forthcoming PhD thesis. Mauro Jaskelioff de-
veloped a new monad transformer library for Haskell,
which provides a uniform approach to lifting opera-
tions. Diana Fulger and Graham Hutton are inves-
tigating equational reasoning about various forms of
effectful programs. Liyang HU and Graham Hutton
are working on verifying the correctness of compilers
for concurrent functional languages, including a model
implementation of software transactional memory.

Teaching

Haskell plays an important role in the undergradu-
ate program at Nottingham, as well as our China
and Malaysia campuses. Modules on offer include
Functional Programming, Advanced FP, Mathematics
for CS, Foundations of Programming, Compilers, and
Computer-Aided Formal Verification, among others.

Events

The FP Lab plays a leading role in the Midlands Grad-
uate School in the Foundations of Computing Science,
the British Colloquium for Theoretical Computer Sci-
ence, and the Fun in the Afternoon seminar series on
functional programming.

79

http://sneezy.cs.nott.ac.uk/joomla/
http://sneezy.cs.nott.ac.uk/joomla/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~nhn/
http://cs.ru.nl/~venanzio/
http://cs.ru.nl/~venanzio/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~pgh/
http://www.cs.nott.ac.uk/~pwm/
http://www.cs.nott.ac.uk/~pwm/
http://www.cs.nott.ac.uk/~rcp/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~npo/
http://cs.nott.ac.uk/~nad/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~nhn/
http://cs.nott.ac.uk/~nas/
http://cs.nott.ac.uk/~ggg/
http://cs.nott.ac.uk/~tan/
http://cs.nott.ac.uk/~tan/
http://www.cs.nott.ac.uk/~txa/
http://www.cs.nott.ac.uk/~asg/
http://www.cs.nott.ac.uk/~asg/QIO/
http://cs.nott.ac.uk/~gmh/
http://ittc.ku.edu/~andygill/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~mjj/
http://cs.nott.ac.uk/~dqf/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~lyh/
http://cs.nott.ac.uk/~gmh/
http://www.nottingham.ac.uk/computer-science/Study_Here/Study_Here.php
http://www.nottingham.ac.uk/computer-science/Study_Here/Study_Here.php
http://www.nottingham.edu.cn/
http://www.nottingham.edu.my/
http://cs.nott.ac.uk/~nxg/G51FUN0708/fun.html
http://cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~txa/g52mc2/
http://cs.nott.ac.uk/~txa/g52mc2/
http://cs.nott.ac.uk/~nhn/G54FOP/
http://cs.nott.ac.uk/~nhn/G52CMP/
http://e-pig.org/darcs/g53cfr/
http://cs.nott.ac.uk/MGS/
http://cs.nott.ac.uk/MGS/
http://www.bctcs.ac.uk/
http://www.bctcs.ac.uk/
http://sneezy.cs.nott.ac.uk/fun/

FP Lunch

Every Friday, we gather for lunch with helpings of in-
formal, impromptu-style whiteboard discussions on re-
cent developments, problems, or projects. Summaries
of our weekly meetings can be found on the frequently
cited FP Lunch blog, giving a lively picture of ongoing
research at Nottingham.
Later in the afternoon, there is usually a formal hour-

long seminar. We are always keen on speakers in any
related areas: do get in touch with Thorsten Altenkirch
〈txa@cs.nott.ac.uk〉 if you would like to visit. See you
there!

8.2 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Manfred Schmidt-Schauß

An ongoing research topic of the group in Frankfurt is
program semantics and analyses of programs.
Deterministic calculi. We proved correctness of

strictness analysis using abstract reduction, which was
implemented by Nöcker for Clean (→ 3.2.3), and by
Schütz for Haskell. Our proof is based on the oper-
ational semantics of an extended call-by-need lambda
calculus which models a core language of Haskell. Fur-
thermore, we proved equivalence of the call-by-name
and call-by-need semantics of an extended lambda cal-
culus with letrec, case, and constructors. This is of
practical relevance, since the semantics of Haskell is
call-by-name but nevertheless almost all implementa-
tions of Haskell use call-by-need evaluation.
Nondeterministic calculi. We explored several

nondeterministic extensions of call-by-need lambda cal-
culi and their applications. We analyzed a model for a
lazy functional language with direct-call I/O providing
a semantics for unsafePerformIO-calls in Haskell. We
investigated a call-by-need lambda-calculus extended
by parallel-or and its applications as a hardware de-
scription language. Most recently, we analyzed a call-
by-need lambda calculus extended with McCarthy’s
amb and an abstract machine for lazy evaluation of
concurrent computations. For all these investigations
an emphasis of our research lies in proving program
equivalences based on contextual equivalence for show-
ing correctness of program transformations.
Simulation-based proof techniques. We have

shown that the soundness proof (w.r.t. contextual
equivalence) for mutual similarity of Matthias Mann
scales up to a class of untyped higher-order non-
deterministic call-by-need lambda calculi. For non-
deterministic call-by-need calculi with letrec, known
approaches to prove such a result are inapplicable.
Recently, in collaboration with Elena Machkasova

we obtained correctness of a variation of simulation
for checking contextual equivalence in an extended
non-deterministic call-by-need lambda-calculus with
letrec. Ongoing research is to adapt and extend the
methods to an appropriately defined simulation, and to
investigate an extension of the methods to a combina-
tion of may- and must-convergence.
Concurrency primitives. Most recently, we ana-

lyzed the expressivity of concurrency primitives in dif-
ferent functional languages. In collaboration with Jan
Schwinghammer and Joachim Niehren, we showed how
to encode Haskell’s MVars into a lambda calculus with
storage and futures which is an idealized core language
of Alice ML. We proved correctness of the encoding us-
ing operational semantics and the notions of adequacy
and full-abstractness of translations.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

8.3 Functional Programming at the
University of Kent

Report by: Olaf Chitil

We are a group of staff and students with shared inter-
ests in functional programming. While our work is not
limited to Haskell — in particular our interest in Erlang
has been growing — Haskell provides a major focus and
common language for teaching and research. We are
seeking PhD students for funded research projects.
Our members pursue a variety of Haskell-related

projects, some of which are reported in other sections
of this report. Both Chris Brown and Thomas Davie
submitted this September their theses on refactoring
and tracing, respectively. Two new students are join-
ing this year. Over the summer Ivan Ivanovski, an
IAESTE student from Macedonia, worked with Olaf
Chitil on improving Heat (→ 4.4.4) and making it ready
for a public release. Heat is a deliberately simple IDE
for teaching Haskell that has been used at Kent for
three years. Keith Hanna is continuing work on Vi-
tal, a document-centered programming environment
for Haskell, and on Pivotal, a GHC-based implemen-
tation of a similar environment. The Kent Systems
Research Group is developing an occam compiler in
Haskell (Tock). Neil Brown has created a Haskell li-
brary (“Communicating Haskell Processes”) based on
the Communicating Sequential Processes calculus.

Further reading

◦ FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

80

http://sneezy.cs.nott.ac.uk/fplunch/weblog/
http://cs.nott.ac.uk/~txa/
mailto: txa at cs.nott.ac.uk
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

◦ Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/

◦ Tracing and debugging with Hat: http://www.
haskell.org/hat

◦ Heat: http://www.cs.kent.ac.uk/projects/heat/
◦ Vital: http://www.cs.kent.ac.uk/projects/vital/
◦ Pivotal: http://www.cs.kent.ac.uk/projects/pivotal/
◦ Tock: https://www.cs.kent.ac.uk/research/groups/
sys/wiki/Tock

◦ CHP http://www.cs.kent.ac.uk/projects/ofa/chp/

8.4 Foundations and Methods Group at
Trinity College Dublin

Report by: Andrew Butterfield
Participants: Glenn Strong, Hugh Gibbons, Edsko de

Vries

The Foundations and Methods Group focuses on formal
methods, category theory, and functional programming
as the obvious implementation method. A sub-group
focuses on the use, semantics, and development of func-
tional languages, covering such areas as:

◦ Supporting OO-Design technique for functional pro-
grammers

◦ Using functional programs as invariants in impera-
tive programming

◦ Developing a GUI-based 2nd-order equational theo-
rem prover (→ 6.7.4)

◦ New approaches to uniqueness typing, applicable to
Hindley-Milner style type-inferencing (→ 3.3.1)

◦ Equational reasoning for Concurrent Haskell (new)

Members of other research groups at TCD have also
used Haskell, such as the work done on Image rendering
using GHC/OpenGL, in the Interaction, Simulation,
and Graphics Lab.

Further reading

https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/
FunctionalProgramming

8.5 Formal Methods at DFKI Bremen and
University of Bremen

Report by: Christian Maeder
Participants: Mihai Codescu, Dominik Lücke, Christoph

Lüth, Christian Maeder, Till Mossakowski,
Lutz Schröder

The activities of our group center on formal meth-
ods and the Common Algebraic Specification Language
(CASL).

We are using the Glasgow Haskell Compiler and
many of its extensions to develop the Heterogeneous
tool set (Hets). Hets consists of parsers, static ana-
lyzers, and proof tools for languages from the CASL
family, such as CASL itself, HasCASL, CoCASL, Csp-
CASL, and ModalCASL, and additionally OMDoc and
Haskell (via Programatica). The Hets implementation
is also based on some old Haskell sources such as bind-
ings to uDrawGraph (formerly Davinci) and Tcl/TK
that we maintain.
HasCASL is a general-purpose higher order language

which is in particular suited for the specification and
development of functional programs; Hets also contains
a translation from an executable HasCASL subset to
Haskell. There is a prototypical translation of a subset
of Haskell to Isabelle/HOL and HOLCF.
Another project using Haskell is the Proof General

Kit, which designs and implements a component-based
framework for interactive theorem proving. The central
middleware of the toolkit is implemented in Haskell.
The project is the successor of the highly successful
Emacs-based Proof General interface. It is a cooper-
ation of David Aspinall from the University of Edin-
burgh and Christoph Lüth from Bremen.
The Coalgebraic Logic Satisfiability Solver CoLoSS

is being implemented jointly at DFKI Bremen and at
the Department of Computing, Imperial College Lon-
don. The tool is generic over representations of the syn-
tax and semantics of certain modal logics; it uses the
Haskell class mechanism, including multi-parameter
type classes with functional dependencies, extensively
to handle the generic aspects.

Further reading

◦ Group activities overview: http://www.informatik.
uni-bremen.de/agbkb/forschung/formal_methods/

◦ CASL specification language: http://www.cofi.info
◦ Heterogeneous tool set: http://www.dfki.de/sks/

hets http://www.informatik.uni-bremen.de/htk/ http:
//www.informatik.uni-bremen.de/uDrawGraph/

◦ Proof General Kit:
http://proofgeneral.inf.ed.ac.uk/Kit

◦ The Coalgebraic Logic Satisfiability Solver CoLoSS:
http://www.informatik.uni-bremen.de/~lschrode/
projects/GenMod, http://www.doc.ic.ac.uk/~dirk/
COLOSS/

8.6 SCIence project

Report by: Kevin Hammond
Status: Ongoing 5-year project, started in 2006

SCIEnce is a 3.2M euros project that brings together
major developers of symbolic computing systems, in-
cluding GAP, KANT, Maple, and MuPAD, and with the
world-leading Centre for Research in Symbolic Compu-

81

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hat
http://www.haskell.org/hat
http://www.cs.kent.ac.uk/projects/heat/
http://www.cs.kent.ac.uk/projects/vital/
http://www.cs.kent.ac.uk/projects/pivotal/
https://www.cs.kent.ac.uk/research/groups/sys/wiki/Tock
https://www.cs.kent.ac.uk/research/groups/sys/wiki/Tock
http://www.cs.kent.ac.uk/projects/ofa/chp/
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/FunctionalProgramming
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/FunctionalProgramming
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.dfki.de/sks/hets
http://www.dfki.de/sks/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/
http://www.informatik.uni-bremen.de/uDrawGraph/
http://proofgeneral.inf.ed.ac.uk/Kit
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.doc.ic.ac.uk/~dirk/COLOSS/
http://www.doc.ic.ac.uk/~dirk/COLOSS/

tation at RISC-Linz (Austria), OpenMath experts from
the Technical University of Eindhoven (Netherlands),
and functional programming experts in the Heriot-
Watt University (Edinburgh, Scotland) and the Uni-
versity of St Andrews (Scotland).
Our research activity — “Symbolic computing on the

Grid” — makes essential use of functional program-
ming technology in the form of the GRID-GUM func-
tional programming system for the Grid, which is built
on the Glasgow Haskell Compiler. The objective is
not the technically infeasible goal of rewriting all these
(and more) complex systems in Haskell. Rather, we
use GRID-GUM to link components built from each of
the symbolic systems to form a coherent heterogeneous
whole. In this way, we hope to achieve what is cur-
rently a pious dream for conventional Grid technology,
and obtain a significant user base both for GRID-GUM
and for Haskell. We are, of course, taking full advan-
tage of Haskell’s abilities to compose and link software
components at a very high level of abstraction.
Our results in this direction are reflected in more

than 30 publications and a number of research talks
and presentations, listed on the project’s website. The
public downloads are now under revision and the up-
dated version should appear soon.

Further reading

http://www.symbolic-computation.org/

8.7 Functional Programming at
K.U.Leuven, Belgium

Report by: Tom Schrĳvers
Participants: Pieter Wuille

We are a two-man unit of functional programming re-
search within the Declarative Languages and Artificial
Intelligence group at the Katholieke Universiteit Leu-
ven, Belgium.
Tom Schrĳvers is pursuing a number of topics in

Haskell related to Constraint Programming.

◦ Type Checking: Recent results are on type check-
ing for type families, and on confluence for non-full
functional dependencies. Ongoing work concerns the
simplification of type checking for Haskell’s exten-
sive type system, and adding new extensions. This
is joint work with Martin Sulzmann, Simon Peyton
Jones, and Manuel Chakravarty.

◦ Test Generation: Together with master student
Timmy Weytjens I am looking at constraint-based
generation of test cases. The constraint-based ap-
proach should be a more efficient than related
random (QuickCheck), exhaustive (SmallCheck)
or semi/pseudo-constraint-based (LazySmallCheck
/ narrowing-based) approaches for certain applica-
tions.

◦ First-Class Constraint Programming: The aim of
this project is to model the generic aspects of Con-
straint Programming in Haskell. Of particular inter-
est is the solver-independent framework for compo-
sitional search strategies. This project involves also
Peter Stuckey and Phil Wadler.

Pieter Wuille recently started his Ph.D., under the
supervision of Bart Demoen and Tom Schrĳvers, on the
automatic transformation from pure to impure data
structures to improve complexity. By combining ab-
straction of data structures, selection of representa-
tion and corresponding implementation, and specific
compiler-optimizations, we hope to overcome the per-
formance penalty caused by purity. More information
can be found in the paper presented at IFL’08. Cur-
rent work includes implementing a framework to test
the required transformations on a simple strict first-
order functional language.

Further reading

◦ http://www.cs.kuleuven.be/~toms/Haskell/
◦ https://www.cs.kuleuven.be/~pieterw/site/Research/

Papers/

8.8 Haskell in Romania

Report by: Dan Popa

This is to report some activities of the Ro/Haskell
group. The Ro/Haskell page becomes more and more
known. The numbers of students and teachers inter-
ested in Haskell is increasing.
A new book, “The Practice Of Monadic Interpreta-

tion” by Dan Popa appears in November 2008.

The book has a nice foreword written by Simon P.J. and
is sharing the experience of a year of interpreter build-
ing (2006). It is intended as a student’s and teacher’s
guide to the practical approach of monadic interpre-
tation. The book will probably be used during this

82

http://www.symbolic-computation.org/
http://www.cs.kuleuven.be/~toms/Haskell/
https://www.cs.kuleuven.be/~pieterw/site/Research/Papers/
https://www.cs.kuleuven.be/~pieterw/site/Research/Papers/

academic year in 2–4 universities across Romania (in
Iasi, Bacau, Cluj-Napoca).
Haskell products like Rodin (a small DSL a bit like

C but written in Romanian) begin to spread, proving
the power of the Haskell language. The Pseudocode
Language Rodin is used as a tool for teaching basics
of computer science in some high-schools from various
cities. Some teachers from a high school have requested
training concerning Rodin.
A group of researchers from the field of linguis-

tics located at the State Univ. from Bacau (The LO-
GOS Group) is declaring the intention of bridging the
gap between semiotics, high level linguistics, struc-
turalism, nonverbal communication, dance semiotics
(and some other intercultural subjects) AND Compu-
tational Linguistics (meaning Pragmatics, Semantics,
Syntax, Lexicology, etc.) using Haskell as a tool for
real projects. Probably the situation from Romania
is not well known: Romania is probably one of those
countries where computational linguistics is studied by
computer scientists less than linguists.
At Bacau State University, we will probably teach

Haskell on both Faculties: Sciences (The Computers
Science being included) and we hope we will work with
Haskell with the TI students from the Fac. Of Engi-
neering, where a course on Formal Languages was re-
quested. “An Introduction to Haskell by Examples”
had traveled to The Transilvania Univ. (Brasov) and
we are expecting Haskell to be used there, too, during
this academic year. Other libraries had received man-
uals and even donations (in books, of course). Editors
seem to be interested by the Ro/Haskell movement,
and some of them have already declared the intention of
helping us by investing capital in the Haskell books pro-
duction. A well known Publishing House (MatrixRom)
asked us to be the Official Publishing House of the
Ro/haskell Group.
There are some unsolved problems, too: PhD. Ad-

visors (specialized in monads, languages engineering,
and Haskell) are almost impossible to find. This fact
seems to block somehow the hiring of good specialists
in Haskell. There was even a funny case when some-
body hired to teach Haskell was tested and interviewed
by a LISP teacher. Of course, the exam was more or
less about lists.

Further reading

◦ Ro/Haskell: http://www.haskell.org/haskellwiki/Ro/
Haskell

◦ Rodin: http://www.haskell.org/haskellwiki/Rodin

8.9 Assorted Small Portland State
University Haskell Bits

Report by: Bart Massey
Participants: Julian Kongslie, Jamey Sharp
Status: Mostly under development

Portland State University is a center of development of
things like GHC, the House Haskell operating system,
etc. Some really amazing work has been done by that
group. That group is not us.
Over the past 1.5 years my students and I have par-

ticipated in a number of Haskell related coding and
community activities. Our goals include:

◦ Better learning and understanding the Haskell pro-
gramming language.

◦ Supporting the project work of myself and my group.

◦ Contributing back to the Haskell community.

◦ Fun.

Specifically, we have:

◦ Taken over hosting for the Haskell Sequence / Haskell
Weekly News. After some serious initial hiccups,
that all seems to be going smoothly.

◦ Constructed several interesting standalone Haskell
applications.
– Jamey Sharp several years ago constructed a

Haskell 802.11 implementation for the Ettus
USRP as a Google Summer of Code project.

– Julian Kongslie has recently completed the first
revision of a novel Haskell embedded DSL for
Hardware Description, Chortl.

– Julian Kongslie has recently completed the first
revision of a Seaside-style Haskell CGI session
framework for web hosting, Riviera.

– I have mostly completed a Haskell spelling-word
suggestion program, thimk, utilizing phonetic
codes and edit distance.

◦ Designed Haskell-supporting hardware. Julian
Kongslie has written Verilog implementations of the
Haskell G-machine. These are not currently avail-
able, as he continues to develop them.

◦ Constructed library code, and contributed some of it
to Hackage and to the Haskell libraries.
– I have written a command-line argument pars-

ing library, ParseArgs, that I have used in a
number of programs. This is in Hackage. How-
ever, plans are in the works to convert one of
my students’ alternate designs currently imple-
mented in C to Haskell, and contribute that in-
stead.

83

http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Rodin

– I have written a WAVE audio file processing li-
brary, and some simple command-line programs
for audio processing. These are mostly in Hack-
age, although I need to package a new release.

– I have written a PBM graphics file processing
library. I am currently working on extending it
to support PNG, at which time I will contribute
it to Hackage.

– We have looked at taking over the HaskellDSP
signal processing library, after receiving permis-
sion from the author to do so. However, this
work is currently stalled.

– In association with my spelling word suggestion
application thimk mentioned earlier, I am devel-
oping a library of phonetic coding algorithms for
contribution to Hackage.

– I have contributed one patch to the Haskell li-
braries, to enforce strictness on some sequence
constructors as required by the Haskell Report.
I also should shortly get my nubOrd function
into the libraries.

◦ Support Haskell in the classroom.
– Perhaps 20% of my students’ projects over the

last few years have been submitted in Haskell.
– I am currently working on tutorial curriculum

based on Real-World Haskell and the Project
Euler problems. Mehana Bisquera-Chang is pi-
loting this curriculum.

◦ Participated in our local Haskell and open source
community. I have given Haskell tutorials at sev-
eral open source events, such as Portland Bar Camp
2008. Julian and I have both presented our work on
several occasions at meetings of the PDX Functional
Programming Users’ Group.

We would like to thank all of those who have assisted
us in this work, but it’s hard to enumerate such a large
list. Josh Triplett has helped with a number of these
projects, and helped me to learn Haskell. Mark Jones
and other Faculty at PSU have occasionally helped us
out. Don Stewart and others in the Haskell community
have provided guidance and support.
What we have been doing is pretty ad hoc and disor-

ganized, but we think we have been making real con-
tributions to the Haskell community. Almost all of our
work is available to the public under open source li-
censes — we welcome its use and help with its devel-
opment.

Further reading

http://wiki.cs.pdx.edu/bartforge

84

http://wiki.cs.pdx.edu/bartforge

	General
	HaskellWiki and haskell.org
	#haskell
	The Monad.Reader
	Haskell Weekly News
	Books and tutorials
	Programming in Haskell
	Real World Haskell
	Haskell Wikibook
	Gtk2Hs tutorial
	Monad Tutorial
	Oleg's Mini tutorials and assorted small projects
	Haskell Cheat Sheet

	Implementations
	The Glasgow Haskell Compiler
	nhc98
	yhc
	The Helium compiler
	EHC, ``Essential Haskell'' Compiler
	Hugs as Yhc Core Producer
	Haskell frontend for the Clean compiler
	The Reduceron
	Platforms
	Haskell in Gentoo Linux
	Fedora Haskell SIG

	Language
	Extensions of Haskell
	Haskell Server Pages (HSP)
	GpH --- Glasgow Parallel Haskell
	Eden
	XHaskell project
	HaskellActor (previously: HaskellActorJoin)

	Related Languages
	Curry
	Agda
	Clean

	Type System / Program Analysis
	Uniqueness Typing
	Free Theorems for Haskell
	The Disciplined Disciple Compiler (DDC)

	Tools
	Scanning, Parsing, Transformations
	Alex version 2
	Happy
	UUAG

	Documentation
	Haddock
	lhs2TeX

	Testing, Debugging, and Analysis
	SmallCheck and Lazy SmallCheck
	EasyCheck
	checkers
	CyCoTest
	Gst
	Hat
	Concurrent Haskell Debugger
	Hpc
	SourceGraph

	Development
	Hoogle --- Haskell API Search
	Leksah, Haskell IDE
	EclipseFP --- Haskell support for the Eclipse IDE
	HEAT: The Haskell Educational Advancement Tool
	Haskell Mode Plugins for Vim
	yi
	HaRe --- The Haskell Refactorer
	DarcsWatch
	cpphs

	Libraries
	Cabal and Hackage
	Haskell Platform
	Auxiliary Libraries
	libmpd
	gravatar
	mersenne-random
	cmath
	hmatrix
	The Neon Library
	unamb

	Processing Haskell
	hint
	mueval
	hscolour

	Parsing and Transforming
	pcre-light
	HStringTemplate
	CoreErlang
	parse-dimacs: A DIMACS CNF Parser
	The X-SAIGA Project
	InterpreterLib
	KURE
	Typed Transformations of Typed Abstract Syntax (TTTAS)
	Grammar Based Read (GRead)
	Utrecht Parser Combinator Library

	Mathematical Objects
	dimensional
	Halculon: units and physical constants database
	Numeric prelude
	vector-space
	Nat
	AERN-Real and friends
	Haskell BLAS Bindings

	Data types and data structures
	Data.ByteString
	bytestring-mmap
	dlist
	HList --- a library for typed heterogeneous collections
	stream-fusion
	Edison
	MemoTrie

	Data processing
	The Haskell Cryptographic Library
	The Haskell ASN.1 Library
	MultiSetRewrite
	Graphalyze

	Generic Programming
	uniplate
	Scrap Your Boilerplate (SYB)
	Extensible and Modular Generics for the Masses (EMGM)
	multirec: Generic programming with systems of recursive datatypes
	Generic rewriting library for regular datatypes
	2LT: Two-Level Transformation

	Types for Safety and Reasoning
	Takusen
	Session Types for Haskell
	Category Extras --- Comonad Transformers and Bird-Meertens combinators
	IOSpec

	User interfaces
	Gtk2Hs
	HQK
	wxHaskell
	Shellac
	Haskeline

	Graphics
	diagrams
	FieldTrip

	Music
	YampaSynth
	Haskore revision

	Web and XML programming
	Haskell XML Toolbox
	HaXml
	tagsoup

	System
	hinotify
	hlibev

	Applications and Projects
	For the Masses
	Darcs
	xmonad

	Education
	Exercise Assistants
	Holmes, plagiarism detection for Haskell
	Geordi IRC C++ eval bot
	Lambda Shell
	INblobs --- Interaction Nets interpreter
	Soccer-Fun

	Web Development
	Holumbus Search Engine Framework
	Top Writer
	Panda blog engine
	InputYourData.com
	Hircules

	Data Management and Visualization
	Pandoc
	tiddlyisar
	Emping
	HaExcel --- From Spreadsheets to Relational Databases and Back
	Between Types and Tables
	SdfMetz

	Functional Reactive Programming
	Grapefruit
	Reactive
	Functional Hybrid Modeling

	Audio and Graphics
	Audio signal processing
	hsProcMusic
	Glome
	easyVision
	photoname
	Simplex-Based Spatial Operations

	Proof Assistants and Reasoning
	Galculator
	funsat: DPLL-style Satisfiability Solver
	sat-micro-hs: SAT-Micro in Haskell
	Saoithín: a 2nd-order proof assistant
	Inference Services for Hybrid Logics
	HyLoRes
	HTab
	HGen
	Sparkle

	Modeling and Analysis
	Coconut
	Streaming Component Combinators
	Raskell
	iTasks

	Hardware Design
	ForSyDe
	Lava
	Wired
	Oread

	Natural Language Processing
	GenI
	Grammatical Framework

	Inductive Programming
	Inductive Programming
	IgorII

	Others
	Bioinformatics tools
	lambdabot
	Roguestar
	Hpysics
	hledger

	Commercial Users
	Well-Typed LLP
	SeeReason Partners, LLC
	Ansemond LLC
	Credit Suisse Global Modeling and Analytics Group
	Bluespec tools for design of complex chips
	Galois, Inc.
	IVU Traffic Technologies AG Rostering Group
	Tupil

	Research and User Groups
	Functional Programming Lab at the University of Nottingham
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Foundations and Methods Group at Trinity College Dublin
	Formal Methods at DFKI Bremen and University of Bremen
	SCIence project
	Functional Programming at K.U.Leuven, Belgium
	Haskell in Romania
	Assorted Small Portland State University Haskell Bits

